PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1182.
Published online 2008 June 7. doi:  10.1107/S160053680801581X
PMCID: PMC2961670

4-(Dimethyl­amino)benzaldehyde

Abstract

The title compound, C9H11NO, crystallizes with two independent but essentially identical mol­ecules in the asymmetric unit, which are linked via a C—H(...)π inter­action. In both mol­ecules, the aldehyde and dimethyl­amine groups are essentially coplanar with the attached benzene ring. In the crystal structure, C—H(...)O hydrogen bonds link one type of independent mol­ecules into a chain along the a axis. In addition, the structure is stabilized by π–π stacking inter­actions involving the benzene rings [centroid-to-centroid distance = 3.697 (2) Å].

Related literature

For synthesis, see: Wu & Zhou (2005 [triangle]). For general background, see: Kawski et al. (2007 [triangle]). For related structures, see: Reffner & McCrone (1959 [triangle]); Dattagupta & Saha (1973 [triangle]); Herbstein et al. (1984 [triangle]); Mahadevan et al. (1982 [triangle]); Habibi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1182-scheme1.jpg

Experimental

Crystal data

  • C9H11NO
  • M r = 149.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1182-efi1.jpg
  • a = 10.356 (6) Å
  • b = 7.686 (4) Å
  • c = 20.8434 (13) Å
  • β = 96.808 (13)°
  • V = 1647.4 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 123 (2) K
  • 0.27 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.979, T max = 0.981
  • 9835 measured reflections
  • 2869 independent reflections
  • 1826 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.160
  • S = 1.01
  • 2869 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801581X/ci2602sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801581X/ci2602Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Zhejiang Institute of Communications, People’s Republic of China, for financial support.

supplementary crystallographic information

Comment

4-Dimethylaminobenzaldehyde (DMABA) is an important intermediate of dyes and medicine. It belongs to the same family as 4-(dimethylamino)benzonitrile (DMABN) which exhibits dual fluorescence and was a subject of extensive investigations (Kawski et al., 2007). Although the unit-cell parameters of DMABA have been reported (Reffner & McCrone, 1959), to our knowledge there is no report on the crystal structure of DMABA. The crystal structures of DMABA hydrobromide (Dattagupta & Saha, 1973), a 1:1 complex in which DMABA acts as a guest molecule in channels (Herbstein et al., 1984), a tin complex in which DMABA serves as a ligand coordinating through its O atom (Mahadevan et al., 1982), and of a 1:1 cocrystal of DMABA and 6-phenyl-1,3,5-triazine-2,4-diamine (Habibi et al., 2007) have been reported. We report here the crystal structure of the title compound.

The title compound crystallizes with two independent but essentially identical molecules in the asymmetric unit (Fig. 1). In both molecules, the aldehyde and dimethylamino groups are essentially coplanar with the attached benzene ring, similar to those observed in above crystal structures. The mean planes through the non-hydrogen atoms of two independent molecules form a dihedral angle of 76.42 (5)°. The two independent molecules are linked via a C—H···π interaction involving the C3—H3 group and C11–C16 benzene ring (Table 1).

In the crystal structure, C—H···O hydrogen bonds (Table 1) link one type of independent molecules into a chain along the a axis. In addition, the structure is stabilized by stacking interactions between the inversion related C11–C16 benzene rings [centroid–centroid distance is 3.697 (2) Å].

Experimental

The title compound was prepared according to the literature method (Wu & Zhou, 2005). Crystals suitable for X-ray analysis were obtained by slow evaporation of a isoproanol solution at room temperature (m.p. 343–347 K).

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H11NOF(000) = 640
Mr = 149.19Dx = 1.203 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2869 reflections
a = 10.356 (6) Åθ = 2–25.0°
b = 7.686 (4) ŵ = 0.08 mm1
c = 20.8434 (13) ÅT = 123 K
β = 96.808 (13)°Block, colourless
V = 1647.4 (12) Å30.27 × 0.23 × 0.20 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer2869 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −12→12
Tmin = 0.979, Tmax = 0.981k = −9→9
9835 measured reflectionsl = −22→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0934P)2] where P = (Fo2 + 2Fc2)/3
2869 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.26881 (13)0.5751 (2)0.18550 (9)0.1025 (6)
O21.37916 (14)0.2647 (3)0.04689 (9)0.1088 (6)
C90.57238 (17)0.7676 (3)0.21132 (10)0.0742 (6)
H9A0.48150.74980.19760.111*
H9B0.59390.88760.20550.111*
H9C0.59120.73730.25610.111*
C80.57965 (16)0.5577 (3)0.12110 (9)0.0653 (5)
H8A0.48760.57230.12130.098*
H8B0.60170.43700.12710.098*
H8C0.60400.59680.08050.098*
C180.69062 (19)0.0550 (3)0.08262 (11)0.0809 (6)
H18A0.59910.06740.06940.121*
H18B0.71020.09200.12670.121*
H18C0.7151−0.06470.07890.121*
C170.68913 (18)0.2440 (3)−0.01380 (10)0.0776 (6)
H17A0.59780.2267−0.01200.116*
H17B0.71320.1938−0.05280.116*
H17C0.70790.3664−0.01320.116*
C50.78138 (15)0.66025 (19)0.18319 (8)0.0453 (4)
C21.05546 (16)0.6610 (2)0.20311 (9)0.0524 (5)
N10.64859 (12)0.65921 (18)0.17319 (7)0.0542 (4)
C40.85497 (16)0.5535 (2)0.14644 (8)0.0508 (4)
H40.81260.48170.11470.061*
C30.98899 (16)0.5538 (2)0.15671 (8)0.0528 (5)
H31.03560.48100.13220.063*
C60.84982 (16)0.7670 (2)0.23045 (8)0.0529 (5)
H60.80420.83850.25590.063*
C70.98356 (16)0.7666 (2)0.23942 (8)0.0559 (5)
H71.02680.83910.27060.067*
C11.19714 (19)0.6632 (3)0.21338 (11)0.0716 (6)
H11.23580.73990.24440.086*
C140.89524 (16)0.1659 (2)0.05031 (8)0.0500 (4)
N20.76244 (14)0.1612 (2)0.04153 (8)0.0629 (5)
C130.96580 (17)0.2560 (2)0.00770 (8)0.0567 (5)
H130.92170.3114−0.02810.068*
C111.16899 (17)0.1858 (2)0.07077 (10)0.0583 (5)
C150.96619 (17)0.0836 (2)0.10370 (9)0.0581 (5)
H150.92260.02100.13270.070*
C161.09953 (17)0.0953 (2)0.11309 (9)0.0609 (5)
H161.14460.04100.14880.073*
C121.09922 (18)0.2640 (2)0.01775 (9)0.0612 (5)
H121.14370.3234−0.01170.073*
C101.3101 (2)0.1939 (3)0.08206 (12)0.0812 (6)
H101.35060.14060.11920.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0548 (8)0.1082 (13)0.1464 (15)0.0050 (8)0.0195 (9)−0.0127 (11)
O20.0684 (10)0.1282 (15)0.1327 (15)−0.0202 (9)0.0242 (10)−0.0258 (12)
C90.0562 (11)0.0765 (14)0.0926 (15)−0.0019 (10)0.0201 (11)−0.0170 (12)
C80.0548 (10)0.0758 (13)0.0633 (12)−0.0026 (9)−0.0012 (9)−0.0029 (10)
C180.0624 (12)0.0841 (15)0.0979 (16)−0.0089 (11)0.0168 (11)0.0110 (13)
C170.0652 (12)0.0777 (15)0.0868 (15)0.0094 (11)−0.0045 (11)0.0036 (12)
C50.0497 (10)0.0397 (9)0.0472 (10)−0.0017 (7)0.0080 (8)0.0049 (7)
C20.0497 (10)0.0492 (10)0.0580 (11)−0.0017 (8)0.0049 (8)0.0099 (8)
N10.0462 (8)0.0562 (9)0.0601 (9)−0.0013 (6)0.0062 (7)−0.0077 (7)
C40.0564 (10)0.0476 (10)0.0486 (10)−0.0012 (8)0.0065 (8)−0.0038 (8)
C30.0554 (10)0.0489 (10)0.0562 (11)0.0040 (8)0.0159 (8)0.0011 (8)
C60.0556 (10)0.0487 (10)0.0548 (11)0.0015 (8)0.0084 (8)−0.0069 (9)
C70.0593 (11)0.0507 (11)0.0565 (11)−0.0054 (8)0.0019 (9)−0.0047 (9)
C10.0550 (12)0.0716 (14)0.0876 (15)−0.0007 (10)0.0052 (11)0.0053 (11)
C140.0566 (10)0.0416 (9)0.0516 (11)0.0016 (8)0.0052 (8)−0.0036 (8)
N20.0534 (9)0.0632 (10)0.0714 (11)0.0016 (7)0.0046 (8)0.0081 (8)
C130.0640 (11)0.0527 (11)0.0532 (11)0.0016 (9)0.0059 (9)0.0043 (9)
C110.0556 (11)0.0541 (11)0.0653 (12)−0.0026 (8)0.0073 (9)−0.0135 (9)
C150.0649 (12)0.0516 (11)0.0584 (11)−0.0029 (9)0.0098 (9)0.0045 (9)
C160.0658 (12)0.0564 (11)0.0576 (11)0.0019 (9)−0.0045 (9)0.0019 (9)
C120.0679 (12)0.0585 (12)0.0601 (12)−0.0068 (9)0.0189 (9)−0.0022 (10)
C100.0660 (13)0.0821 (15)0.0966 (17)−0.0098 (11)0.0147 (12)−0.0188 (13)

Geometric parameters (Å, °)

O1—C11.204 (2)C2—C31.389 (2)
O2—C101.212 (3)C2—C11.457 (3)
C9—N11.448 (2)C4—C31.379 (2)
C9—H9A0.96C4—H40.93
C9—H9B0.96C3—H30.93
C9—H9C0.96C6—C71.375 (2)
C8—N11.454 (2)C6—H60.93
C8—H8A0.96C7—H70.93
C8—H8B0.96C1—H10.93
C8—H8C0.96C14—N21.366 (2)
C18—N21.450 (2)C14—C131.399 (2)
C18—H18A0.96C14—C151.409 (2)
C18—H18B0.96C13—C121.374 (3)
C18—H18C0.96C13—H130.93
C17—N21.451 (2)C11—C121.384 (3)
C17—H17A0.96C11—C161.389 (3)
C17—H17B0.96C11—C101.454 (3)
C17—H17C0.96C15—C161.374 (2)
C5—N11.366 (2)C15—H150.93
C5—C41.407 (2)C16—H160.93
C5—C61.407 (2)C12—H120.93
C2—C71.386 (2)C10—H100.93
N1—C9—H9A109.5C4—C3—C2121.02 (16)
N1—C9—H9B109.5C4—C3—H3119.5
H9A—C9—H9B109.5C2—C3—H3119.5
N1—C9—H9C109.5C7—C6—C5120.61 (16)
H9A—C9—H9C109.5C7—C6—H6119.7
H9B—C9—H9C109.5C5—C6—H6119.7
N1—C8—H8A109.5C6—C7—C2121.65 (16)
N1—C8—H8B109.5C6—C7—H7119.2
H8A—C8—H8B109.5C2—C7—H7119.2
N1—C8—H8C109.5O1—C1—C2126.2 (2)
H8A—C8—H8C109.5O1—C1—H1116.9
H8B—C8—H8C109.5C2—C1—H1116.9
N2—C18—H18A109.5N2—C14—C13121.43 (16)
N2—C18—H18B109.5N2—C14—C15121.09 (16)
H18A—C18—H18B109.5C13—C14—C15117.46 (16)
N2—C18—H18C109.5C14—N2—C18120.96 (15)
H18A—C18—H18C109.5C14—N2—C17121.23 (15)
H18B—C18—H18C109.5C18—N2—C17117.37 (15)
N2—C17—H17A109.5C12—C13—C14121.13 (17)
N2—C17—H17B109.5C12—C13—H13119.4
H17A—C17—H17B109.5C14—C13—H13119.4
N2—C17—H17C109.5C12—C11—C16117.64 (17)
H17A—C17—H17C109.5C12—C11—C10122.03 (19)
H17B—C17—H17C109.5C16—C11—C10120.32 (19)
N1—C5—C4120.93 (15)C16—C15—C14120.27 (17)
N1—C5—C6121.63 (15)C16—C15—H15119.9
C4—C5—C6117.44 (15)C14—C15—H15119.9
C7—C2—C3118.28 (16)C15—C16—C11121.97 (17)
C7—C2—C1120.65 (17)C15—C16—H16119.0
C3—C2—C1121.07 (17)C11—C16—H16119.0
C5—N1—C9121.13 (15)C13—C12—C11121.50 (17)
C5—N1—C8120.89 (14)C13—C12—H12119.3
C9—N1—C8117.86 (14)C11—C12—H12119.3
C3—C4—C5120.99 (16)O2—C10—C11125.1 (2)
C3—C4—H4119.5O2—C10—H10117.4
C5—C4—H4119.5C11—C10—H10117.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.962.573.459 (3)155
C3—H3···Cg10.932.783.593 (3)146

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2602).

References

  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dattagupta, J. K. & Saha, N. N. (1973). Acta Cryst. B29, 1228–1233.
  • Habibi, M. H., Zendehdel, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o474–o476. [PubMed]
  • Herbstein, F. H., Kapon, M., Reisner, G. M. & Rubin, G. M. (1984). J. Inclusion Phenom. Macrocycl. Chem.1, 233–250.
  • Kawski, A., Kuklinski, B. & Bojarski, P. (2007). Chem. Phys. Lett.448, 208–212.
  • Mahadevan, C., Seshasayee, M. & Kothiwal, A. S. (1982). Cryst. Struct. Commun.11, 1725–1730.
  • Reffner, J. & McCrone, W. C. (1959). Anal. Chem.31, 1119–1120.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Y. X. & Zhou, J. H. (2005). Yunnan Chem. Technol.32(3), 20–22.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography