PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1360.
Published online 2008 June 28. doi:  10.1107/S1600536808018783
PMCID: PMC2961668

2,2-Bis(3-chloro­methyl-4-ethoxy­phen­yl)propane

Abstract

The title compound, C21H26Cl2O2, a bis-chloro­methyl derivative of O-ethyl­ated bis­phenol A, exhibits C 2 mol­ecular symmetry. It shows a bent conformation with the two benzene rings nearly perpendicular [dihedral angle = 87.17 (6)°].

Related literature

For more information on the synthesis, see: Miyazawa et al. (1999 [triangle]). For background to the investigation of new conjugated polymers derived from bis­phenols as potential organic semi-conducting materials, see: Jaballah et al. (2006 [triangle]). For the use of bis-chloro­methyl bis­phenol A ethers for the control of fungal and bacterial organisms, see: Priddy & Hennis (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1360-scheme1.jpg

Experimental

Crystal data

  • C21H26Cl2O2
  • M r = 381.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1360-efi2.jpg
  • a = 13.856 (5) Å
  • b = 15.185 (6) Å
  • c = 10.999 (4) Å
  • β = 118.82 (3)°
  • V = 2027.7 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 293 (2) K
  • 0.42 × 0.33 × 0.21 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: none
  • 2374 measured reflections
  • 1960 independent reflections
  • 1173 reflections with I > 2σ(I)
  • R int = 0.022
  • 2 standard reflections frequency: 120 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.118
  • S = 1.02
  • 1960 reflections
  • 166 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018783/kp2175sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018783/kp2175Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

BPAEtCl was synthesized as part of an ongoing program on the investigation of new conjugated polymers derived from bisphenols as potential organic semi-conducting materials (Jaballah et al., 2006). This intermediate is of value in synthetic work inasmuch as the CH2C1 group can be converted to other groups such as CH2CN, CH2OH and CHO. Particularly, the bend-like structure of bisphenol A (BPA) nucleus offers a special interest in metacyclophanes synthesis (Miyazawa et al., 1999). Bis-chloromethyl bisphenol A ethers are also useful as microbicides for control of fungal and bacterial organisms (Priddy & Hennis, 1970). The molecular structure of BPAEtCl is shown in Fig. 1. The two benzene rings are nearly perpendicular, forming a dihedral angle of 87.17 (6)°. The ethoxy group plan [O1—C8—C9] is almost parallel with the benzene ring with the dihedral angle of 6.82 (37)° whereas chloromethyl group plan [C1—C7—Cl] is close to be perpendicular [82.62 (13)°].

Experimental

BPAEtCl was synthesized in two steps from 4,4'-isopropylidenediphenol [Bisphenol A, BPA]. To a stirred mixture of BPA (10 mmoles) and K2CO3 (40 mmoles) in 20 mL of dimethylformamide, was added dropwise bromoethane (30 mmoles). After stirring for 5 h at room temperature, the reaction mixture was poured into distilled water and extracted with diethyl ether. The extract was washed with distilled water, dried over anhydrous MgSO4, and then evaporated. The resultant crude product was purified by recrystallization from ethanol/water (3/1) to afford the 2,2-bis-(4-ethoxyphenyl)propane [BPAEt] as needle-like white crystals. A mixture of BPAEt (10 mmoles), paraformaldehyde (2.5 g), and 37% aqueous HCl (8.5 mL) in acetic acid (30 mL) was heated at 328 K for 5 h. The resulting mixture was then poured into distilled water and extracted with diethyl ether. The organic layer was washed several times with distilled water and dried over anhydrous MgSO4. After solvent removal and two recrystallizations from hexane, we obtained BPAEtCl as colourless crystals. Yield: 75%; mp: 352–354 K.

Refinement

Hydrogen atoms were located in a fourier map and refined freely with isotropic thermal parameters.

Figures

Fig. 1.
The molecular structure of BPAEtCl, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Symmetry code: (i) -x + 1, y, -z + 5/2.

Crystal data

C21H26Cl2O2F000 = 808
Mr = 381.32Dx = 1.249 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.856 (5) Åθ = 11.6–15.7º
b = 15.185 (6) ŵ = 0.33 mm1
c = 10.999 (4) ÅT = 293 (2) K
β = 118.82 (3)ºPrism, colourless
V = 2027.7 (13) Å30.42 × 0.33 × 0.21 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.022
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 2.2º
T = 293(2) Kh = −17→17
non–profiled ω scansk = −6→18
Absorption correction: nonel = −1→13
2374 measured reflections2 standard reflections
1960 independent reflections every 120 min
1173 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.052P)2 + 0.7485P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.118Δρmax = 0.25 e Å3
S = 1.03Δρmin = −0.21 e Å3
1960 reflectionsExtinction correction: none
166 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
HC20.2827 (17)0.0620 (14)1.052 (2)0.046 (6)*
HC40.5740 (19)0.1686 (14)1.147 (2)0.050 (6)*
H1110.641 (2)0.0223 (19)1.220 (3)0.085 (9)*
H2110.6149 (19)−0.0548 (15)1.306 (3)0.052 (6)*
H1C70.124 (2)0.1193 (16)0.880 (3)0.064 (8)*
HC50.4965 (18)0.2588 (15)0.961 (2)0.051 (6)*
H3110.5386 (19)−0.0493 (15)1.142 (3)0.056 (6)*
H2C70.126 (2)0.2044 (18)0.786 (3)0.077 (8)*
H2C80.403 (3)0.278 (2)0.719 (3)0.102 (11)*
H1C90.318 (3)0.390 (2)0.568 (4)0.109 (13)*
H2C90.217 (3)0.403 (3)0.598 (4)0.128 (14)*
H3C90.224 (4)0.315 (3)0.524 (5)0.152 (17)*
H1C80.392 (3)0.362 (2)0.807 (4)0.107 (12)*
Cl0.11729 (5)0.08024 (5)0.67435 (7)0.0780 (3)
C100.50.04410 (18)1.250.0424 (7)
O10.28391 (12)0.26525 (10)0.77132 (17)0.0557 (5)
C30.43999 (15)0.10349 (12)1.1219 (2)0.0360 (5)
C10.27565 (15)0.15480 (13)0.9159 (2)0.0395 (5)
C50.45100 (18)0.21933 (13)0.9770 (2)0.0436 (5)
C20.32750 (16)0.10062 (13)1.0324 (2)0.0386 (5)
C40.49939 (17)0.16456 (13)1.0907 (2)0.0420 (5)
C60.33857 (16)0.21428 (12)0.8875 (2)0.0408 (5)
C70.15422 (18)0.14840 (18)0.8252 (3)0.0522 (6)
C110.5796 (2)−0.01497 (17)1.2272 (3)0.0600 (8)
C80.3483 (3)0.3195 (2)0.7315 (4)0.0752 (9)
C90.2741 (4)0.3638 (3)0.5969 (4)0.0863 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0520 (4)0.0956 (5)0.0591 (5)0.0027 (3)0.0050 (3)−0.0129 (4)
C100.0475 (15)0.0365 (14)0.0313 (17)00.0095 (13)0
O10.0532 (9)0.0566 (9)0.0505 (11)0.0097 (7)0.0195 (8)0.0228 (8)
C30.0406 (10)0.0330 (9)0.0282 (12)−0.0002 (7)0.0116 (8)−0.0029 (8)
C10.0371 (10)0.0412 (10)0.0358 (12)0.0050 (8)0.0141 (9)0.0017 (9)
C50.0467 (11)0.0390 (10)0.0434 (14)−0.0058 (9)0.0204 (10)0.0022 (10)
C20.0382 (10)0.0382 (10)0.0367 (13)−0.0020 (8)0.0159 (9)−0.0001 (9)
C40.0358 (10)0.0433 (11)0.0363 (13)−0.0055 (8)0.0090 (9)−0.0046 (9)
C60.0450 (11)0.0383 (10)0.0344 (13)0.0055 (8)0.0154 (9)0.0030 (9)
C70.0400 (11)0.0592 (14)0.0478 (16)0.0077 (10)0.0135 (10)0.0061 (12)
C110.0727 (17)0.0472 (13)0.0393 (16)0.0191 (12)0.0104 (13)−0.0055 (12)
C80.0762 (19)0.078 (2)0.071 (2)0.0090 (16)0.0357 (17)0.0314 (17)
C90.102 (3)0.087 (2)0.080 (3)0.027 (2)0.052 (2)0.042 (2)

Geometric parameters (Å, °)

Cl—C71.808 (3)C5—HC50.95 (2)
C10—C11i1.533 (3)C2—HC20.95 (2)
C10—C111.533 (3)C4—HC40.92 (2)
C10—C3i1.537 (3)C7—H1C70.99 (3)
C10—C31.537 (2)C7—H2C70.95 (3)
O1—C61.368 (2)C11—H1111.06 (3)
O1—C81.430 (3)C11—H2110.97 (2)
C3—C21.386 (3)C11—H3110.98 (3)
C3—C41.388 (3)C8—C91.494 (4)
C1—C61.392 (3)C8—H2C81.04 (3)
C1—C21.395 (3)C8—H1C81.00 (4)
C1—C71.489 (3)C9—H1C90.91 (4)
C5—C41.377 (3)C9—H2C90.99 (4)
C5—C61.387 (3)C9—H3C91.07 (5)
C8—C91.494 (4)
C11i—C10—C11108.4 (3)C1—C7—Cl112.38 (17)
C11i—C10—C3i107.90 (14)C1—C7—H1C7107.3 (15)
C11—C10—C3i112.29 (13)Cl—C7—H1C7106.6 (15)
C11i—C10—C3112.29 (13)C1—C7—H2C7109.6 (16)
C11—C10—C3107.90 (14)Cl—C7—H2C7102.7 (17)
C3i—C10—C3108.1 (2)H1C7—C7—H2C7118 (2)
C6—O1—C8117.78 (18)C10—C11—H111111.7 (16)
C2—C3—C4116.32 (18)C10—C11—H211108.1 (14)
C2—C3—C10123.99 (17)H111—C11—H211109 (2)
C4—C3—C10119.69 (16)C10—C11—H311109.7 (14)
C6—C1—C2119.21 (18)H111—C11—H311109 (2)
C6—C1—C7121.3 (2)H211—C11—H311109.5 (18)
C2—C1—C7119.5 (2)O1—C8—C9109.2 (3)
C4—C5—C6120.0 (2)O1—C8—H2C8107.3 (17)
C4—C5—HC5118.4 (14)C9—C8—H2C8109.7 (19)
C6—C5—HC5121.6 (14)O1—C8—H1C8110 (2)
C3—C2—C1122.58 (19)C9—C8—H1C8113 (2)
C3—C2—HC2119.3 (13)H2C8—C8—H1C8108 (3)
C1—C2—HC2118.1 (13)C8—C9—H1C9107 (2)
C5—C4—C3122.72 (19)C8—C9—H2C9115 (2)
C5—C4—HC4118.3 (14)H1C9—C9—H2C9115 (3)
C3—C4—HC4119.0 (14)C8—C9—H3C9109 (2)
O1—C6—C5123.96 (19)H1C9—C9—H3C9110 (3)
O1—C6—C1116.89 (18)H2C9—C9—H3C9101 (3)
C5—C6—C1119.15 (19)

Symmetry codes: (i) −x+1, y, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2175).

References

  • Enraf–Nonius (1994). CAD-4 EXPRESS Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jaballah, N., Trad, H., Majdoub, M., Jouini, M., Roussel, J. & Fave, J. L. (2006). J. Appl. Polym. Sci.99, 2997–3004.
  • Miyazawa, A., Suzuki, Y., Sawada, T., Mataka, S. & Tashiro, M. (1999). J. Chem. Res. Synop.7, 426–427.
  • Priddy, D. B. & Hennis, H. E. (1970). US Patent 3 546 299.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography