PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m879.
Published online 2008 June 7. doi:  10.1107/S1600536808016619
PMCID: PMC2961662

catena-Poly[[bis­(methanol-κO)bis­(pyridine-κN)nickel(II)]-μ-tetra­fluoro­terephthalato-κ2 O:O′]

Abstract

In the title compound, [Ni(C8F4O4)(C5H5N)2(CH4O)2]n, the NiII ion is located on an inversion center and is coordinated by four O atoms [Ni—O = 2.079 (4) Å] from two tetra­fluoro­terephthalate ligands and two methanol mol­ecules, and by two N atoms [Ni—N = 2.127 (4) Å] from two pyridine ligands in a distorted octa­hedral geometry. The NiII ions are connected via the tetra­fluoro­terephthalate anions into a one-dimensional chain running along the crystallographic [011] direction.

Related literature

For useful applications of supra­molecular coordination polymers, see: Janiak (2003 [triangle]); Rao et al. (2004 [triangle]); James (2003 [triangle]); Dietzel et al. (2005 [triangle]); Zhang et al. (2007 [triangle]). For related crystal structures, see: Kim et al. (2003 [triangle]); Go et al. (2004 [triangle]); Wang et al. (2003 [triangle]); Śledź et al. (2001 [triangle]); Li et al. (2003 [triangle]); Rosi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m879-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8F4O4)(C5H5N)2(CH4O)2]
  • M r = 517.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m879-efi1.jpg
  • a = 7.9159 (7) Å
  • b = 8.8846 (8) Å
  • c = 9.0219 (14) Å
  • α = 100.442 (9)°
  • β = 101.559 (9)°
  • γ = 114.396 (6)°
  • V = 540.78 (11) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 273 (2) K
  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.868, T max = 0.909
  • 3004 measured reflections
  • 1901 independent reflections
  • 1210 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.168
  • S = 1.03
  • 1901 reflections
  • 151 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808016619/cv2417sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016619/cv2417Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Center of Analysis and Testing of Jiangnan University, and the Research Institute of Elemento-organic Chemistry of Taishan College.

supplementary crystallographic information

Comment

Supramolecular coordination polymers have attracted considerable interest recently due to their intriguing network topologies and their potential applications as gas storage systems, sensors, catalysis, ion exchange materials and magnetic materials (Janiak, 2003; Rao et al., 2004; James, 2003; Dietzel et al., 2005). Chemical modification with the organic ligand can be carried out for constructing materials of different properties. Some research work in computational study suggests that adsorption property in gas storage can be improved with electronegative atoms in the organic linkers or frameworks (Zhang et al., 2007). New topologies with favorable properties will be achieved by introducing some strong electronegative atoms (e.g. Halogen atoms) to in the aromatic ring.

The one-dimensional linear electronically neutral chains of the title nickel(II) complex, (I) (Fig. 1), crystallizes in the triclinic space group P1. The tetrafluoroterephthalate ligands are coordinated to nickel(II) ion in one monodentate pattern. In the octahedron unit, two O atoms from the tetrafluoroterephthalate ligands and two N atoms from pyridine molecules form the equatorial plane. The axial positions are occupied by O atoms from two methanol molecules with a O—Ni—O angle of 180.0 (3)°. The equatorial plane and pyridyl ring form a dihedral angle of 15.2 (1)°. The Ni—O bond lengths are 2.079 (3) and 2.079 (4) Å and agree well with the reported values in related structures (Kim et al., 2003; Go et al., 2004). Both of the Ni—N bond lengths are 2.127 (4) Å, which are comparable with reported values in the similar complexes (Wang et al., 2003; Li et al., 2003). In the aromatic ring system, the bond lengths and bond angles are slightly larger than that in reported terephthalaic acid (Śledź et al., 2001). In addition, the hydroxyl groups of methanol molecules act as donors in O—H···O hydrogen bonds (Table 1).

Experimental

All the reagents and solvents employed were commercially available, and tetrafluoroterephthalaic acid was purified by recrystallization. The title compound was prepared according to the literature procedure of Rosi et al. (2005).

Tetrafluoroterephthalaic acid (0.0714 g, 0.30 mmol) and Ni(NO3)2.6H2O (0.0436 g, 0.15 mmol) were placed in a small vial and dissolved in a mixture of methanol (3 ml) and acetonitrile (3 ml) at room temperature. The vial was then placed in a larger vial containing pyridine (4 ml), which was sealed and left undisturbed for 7 d at room temperature. The resulting green block-shaped crystals were collected by filtration, washed with methanol (3 ml), and air dried to give the title complex (0.06 g, 77% yield). Elemental analysis (%) calcd. for C20H18F4N2NiO6: C, 46.45%; H, 3.51%; N, 5.42%; Found: C,46.48%; H, 3.55%; N, 5.38%.

Refinement

All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H and O—H distances of 0.91–0.97 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms (Å2).

Figures

Fig. 1.
A portion of the crystal structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, -z). H atoms omitted for clarity.
Fig. 2.
Supplementary figure.

Crystal data

[Ni(C8F4O4)(C5H5N)2(CH4O)2]Z = 1
Mr = 517.07F000 = 264
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P1Mo Kα radiation λ = 0.71073 Å
a = 7.9159 (7) ÅCell parameters from 409 reflections
b = 8.8846 (8) Åθ = 3.7–18.2º
c = 9.0219 (14) ŵ = 0.97 mm1
α = 100.442 (9)ºT = 273 (2) K
β = 101.559 (9)ºBlock, green
γ = 114.396 (6)º0.15 × 0.12 × 0.10 mm
V = 540.78 (11) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer1901 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 3.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −9→9
Tmin = 0.868, Tmax = 0.909k = −8→10
3004 measured reflectionsl = −10→10

Refinement

Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065  w = 1/[σ^2^(Fo^2^) + (0.076P)^2^ + 0.2195P], P = (Fo^2^ + 2Fc^2^)/3
wR(F2) = 0.168(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.67 e Å3
1901 reflectionsΔρmin = −0.46 e Å3
151 parametersExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.00000.00000.0463 (4)
O1−0.0204 (5)0.1748 (4)0.1738 (4)0.0514 (10)
O20.2732 (7)0.2924 (6)0.3536 (5)0.0893 (16)
O30.2791 (6)0.0643 (5)0.1351 (4)0.0642 (12)
H30.28480.12280.23200.096*
N10.1405 (7)0.2043 (5)−0.0943 (5)0.0495 (12)
F10.2568 (6)0.6330 (4)0.3438 (4)0.0798 (12)
F2−0.1649 (6)0.1587 (4)0.4752 (4)0.0770 (11)
C10.1084 (10)0.2749 (7)0.3031 (7)0.0525 (14)
C20.0498 (8)0.3903 (7)0.4030 (6)0.0476 (13)
C3−0.0823 (9)0.3286 (7)0.4841 (6)0.0523 (14)
C40.1304 (8)0.5655 (7)0.4223 (6)0.0538 (15)
C50.2384 (9)0.1849 (8)−0.1928 (7)0.0636 (16)
H50.23950.0793−0.22040.076*
C60.3374 (10)0.3084 (10)−0.2565 (8)0.0781 (19)
H60.40060.2858−0.32740.094*
C70.3426 (10)0.4657 (10)−0.2148 (8)0.078 (2)
H70.41200.5537−0.25430.093*
C80.2427 (11)0.4911 (9)−0.1129 (8)0.079 (2)
H80.24150.5964−0.08300.095*
C90.1441 (10)0.3574 (8)−0.0557 (7)0.0643 (16)
H90.07670.37540.01330.077*
C100.3668 (15)−0.0333 (11)0.1774 (13)0.148 (5)
H10A0.3276−0.07340.26280.222*
H10B0.50590.03610.21070.222*
H10C0.3283−0.13080.08820.222*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0591 (8)0.0449 (6)0.0396 (6)0.0293 (5)0.0189 (5)0.0065 (4)
O10.066 (3)0.050 (2)0.040 (2)0.033 (2)0.018 (2)0.0029 (18)
O20.078 (3)0.108 (4)0.063 (3)0.056 (3)0.004 (3)−0.029 (3)
O30.069 (3)0.074 (3)0.051 (2)0.044 (2)0.017 (2)0.000 (2)
N10.056 (3)0.049 (3)0.046 (3)0.026 (2)0.018 (2)0.012 (2)
F10.103 (3)0.071 (2)0.083 (3)0.040 (2)0.064 (2)0.0212 (19)
F20.102 (3)0.051 (2)0.086 (3)0.035 (2)0.052 (2)0.0126 (18)
C10.065 (4)0.053 (3)0.041 (3)0.030 (3)0.022 (3)0.005 (3)
C20.054 (3)0.047 (3)0.038 (3)0.025 (3)0.015 (3)−0.002 (2)
C30.064 (4)0.044 (3)0.046 (3)0.027 (3)0.019 (3)0.003 (2)
C40.062 (4)0.062 (4)0.043 (3)0.031 (3)0.027 (3)0.009 (3)
C50.076 (4)0.066 (4)0.063 (4)0.039 (3)0.036 (3)0.022 (3)
C60.072 (4)0.089 (5)0.081 (4)0.032 (4)0.037 (4)0.038 (4)
C70.067 (4)0.077 (4)0.074 (4)0.014 (4)0.016 (4)0.039 (4)
C80.097 (5)0.055 (4)0.077 (4)0.031 (4)0.018 (4)0.024 (3)
C90.086 (4)0.056 (3)0.058 (3)0.036 (3)0.029 (3)0.017 (3)
C100.141 (8)0.102 (6)0.174 (10)0.092 (7)−0.036 (7)−0.014 (6)

Geometric parameters (Å, °)

Ni1—O32.079 (4)C2—C31.381 (7)
Ni1—O3i2.079 (4)C3—C4ii1.371 (7)
Ni1—O1i2.079 (3)C4—C3ii1.371 (7)
Ni1—O12.079 (3)C5—C61.359 (8)
Ni1—N1i2.127 (4)C5—H50.9300
Ni1—N12.127 (4)C6—C71.361 (9)
O1—C11.261 (6)C6—H60.9300
O2—C11.226 (7)C7—C81.373 (10)
O3—C101.375 (8)C7—H70.9300
O3—H30.9147C8—C91.379 (9)
N1—C51.323 (7)C8—H80.9300
N1—C91.329 (7)C9—H90.9300
F1—C41.343 (6)C10—H10A0.9600
F2—C31.354 (6)C10—H10B0.9600
C1—C21.518 (7)C10—H10C0.9600
C2—C41.377 (7)
O3—Ni1—O3i180.0 (3)F2—C3—C4ii118.0 (5)
O3—Ni1—O1i88.71 (14)F2—C3—C2119.6 (5)
O3i—Ni1—O1i91.29 (14)C4ii—C3—C2122.3 (5)
O3—Ni1—O191.29 (14)F1—C4—C3ii119.4 (5)
O3i—Ni1—O188.71 (14)F1—C4—C2118.5 (5)
O1i—Ni1—O1180.0 (2)C3ii—C4—C2122.1 (5)
O3—Ni1—N1i94.29 (17)N1—C5—C6124.6 (6)
O3i—Ni1—N1i85.71 (17)N1—C5—H5117.7
O1i—Ni1—N1i89.23 (15)C6—C5—H5117.7
O1—Ni1—N1i90.77 (15)C5—C6—C7119.0 (7)
O3—Ni1—N185.71 (17)C5—C6—H6120.5
O3i—Ni1—N194.29 (17)C7—C6—H6120.5
O1i—Ni1—N190.77 (15)C6—C7—C8118.2 (7)
O1—Ni1—N189.23 (15)C6—C7—H7120.9
N1i—Ni1—N1180.00 (19)C8—C7—H7120.9
C1—O1—Ni1127.3 (4)C7—C8—C9118.8 (6)
C10—O3—Ni1132.9 (5)C7—C8—H8120.6
C10—O3—H3101.1C9—C8—H8120.6
Ni1—O3—H3101.3N1—C9—C8123.3 (6)
C5—N1—C9116.1 (5)N1—C9—H9118.3
C5—N1—Ni1119.8 (4)C8—C9—H9118.3
C9—N1—Ni1124.0 (4)O3—C10—H10A109.5
O2—C1—O1127.9 (5)O3—C10—H10B109.5
O2—C1—C2117.6 (5)H10A—C10—H10B109.5
O1—C1—C2114.4 (5)O3—C10—H10C109.5
C4—C2—C3115.6 (5)H10A—C10—H10C109.5
C4—C2—C1121.7 (5)H10B—C10—H10C109.5
C3—C2—C1122.6 (5)
O3—Ni1—O1—C11.8 (5)Ni1—O1—C1—C2178.6 (3)
O3i—Ni1—O1—C1−178.2 (5)O2—C1—C2—C469.3 (8)
O1i—Ni1—O1—C1−146 (100)O1—C1—C2—C4−108.6 (6)
N1i—Ni1—O1—C196.1 (5)O2—C1—C2—C3−108.6 (7)
N1—Ni1—O1—C1−83.9 (5)O1—C1—C2—C373.5 (7)
O3i—Ni1—O3—C10142 (100)C4—C2—C3—F2−178.3 (5)
O1i—Ni1—O3—C10−48.5 (8)C1—C2—C3—F2−0.3 (8)
O1—Ni1—O3—C10131.5 (8)C4—C2—C3—C4ii0.1 (9)
N1i—Ni1—O3—C1040.6 (8)C1—C2—C3—C4ii178.1 (5)
N1—Ni1—O3—C10−139.4 (8)C3—C2—C4—F1−178.6 (5)
O3—Ni1—N1—C572.0 (4)C1—C2—C4—F13.4 (8)
O3i—Ni1—N1—C5−108.0 (4)C3—C2—C4—C3ii−0.1 (9)
O1i—Ni1—N1—C5−16.7 (4)C1—C2—C4—C3ii−178.2 (5)
O1—Ni1—N1—C5163.3 (4)C9—N1—C5—C6−0.8 (9)
N1i—Ni1—N1—C5−169 (100)Ni1—N1—C5—C6−178.2 (5)
O3—Ni1—N1—C9−105.2 (5)N1—C5—C6—C71.8 (10)
O3i—Ni1—N1—C974.8 (5)C5—C6—C7—C8−1.7 (10)
O1i—Ni1—N1—C9166.2 (5)C6—C7—C8—C90.9 (10)
O1—Ni1—N1—C9−13.8 (5)C5—N1—C9—C80.0 (9)
N1i—Ni1—N1—C914 (100)Ni1—N1—C9—C8177.2 (5)
Ni1—O1—C1—O20.9 (9)C7—C8—C9—N10.0 (10)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O20.921.742.581 (6)151

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2417).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvåg, H. (2005). Angew. Chem. Int. Ed.44, 6354–6358. [PubMed]
  • Go, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem.43, 5360–5367. [PubMed]
  • James, S. (2003). Chem. Soc. Rev.32, 276–288. [PubMed]
  • Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781–2804.
  • Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun.6, 474–477.
  • Li, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C. J. (2003). Inorg. Chem.42, 3119–3124. [PubMed]
  • Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [PubMed]
  • Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc.127, 1504–1518. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Śledź, M., Janczak, J. & Kubiak, R. (2001). J. Mol. Struct.595, 77–82.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, L. Y., Liu, Z. L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. Commun.6, 630–633.
  • Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography