PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m938.
Published online 2008 June 19. doi:  10.1107/S1600536808018114
PMCID: PMC2961661

Chloridobis{N-[(dimethyl­amino)dimethyl­silyl]-2,6-dimethyl­anilido-κ2 N,N′}iron(III)

Abstract

The title iron(III) compound, [Fe(C12H21N2Si)2Cl], is monomeric. The Fe atom is N,N′-chelated by the N-silylated anilide ligand. The two ligands around the Fe atom are arranged trans to each other. The Fe—Namino bond is longer than the Fe—Nanilide bond by about 0.37 Å. The mol­ecule displays a pseudo-twofold rotation. The five–coordinate Fe atom demonstrates a highly distorted trigonal–bipyramidal geometry.

Related literature

For related chelate iron(III) compounds and their applications, involving, for example, porphyrin, bypyridine, amidinate as well as guanidinate, see: Rath et al. (2004 [triangle]); Schunemann et al. (1999 [triangle]); Collomb et al. (1999 [triangle]); O’Keefe et al. (2002 [triangle]); Foley et al. (2000 [triangle]). For related zinc compounds with analogous analido ligands, see: Schumann et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m938-scheme1.jpg

Experimental

Crystal data

  • [Fe(C12H21N2Si)2Cl]
  • M r = 534.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m938-efi1.jpg
  • a = 34.213 (5) Å
  • b = 9.3555 (14) Å
  • c = 20.769 (4) Å
  • β = 122.924 (5)°
  • V = 5580.1 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 293 (2) K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.808, T max = 0.866
  • 11193 measured reflections
  • 4880 independent reflections
  • 4359 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.06
  • 4880 reflections
  • 301 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018114/rk2098sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018114/rk2098Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out under the sponsorship of the Shanxi Returned Overseas Scholarship Foundation.

supplementary crystallographic information

Comment

The study of iron(III) amides with the monodentate ligands was relatively less because it was generally believed that a "mismatch" between the "hard" amido ligand and the "soft" late transition metal center rendered the corresponding M—N bond relatively unstable. Iron(III) ion could be stablized by the chelate ligands, such as porphyrin (Rath et al., 2004; Schunemann et al., 1999), bypyridine (Collomb et al., 1999) and amidinate (O'Keefe et al., 2002) as well as guanidinate (Foley et al., 2000).

The title compound is supported by the N–silylated anilido ligand with a pendant amino group. It is the first example of iron(III) ion coordinated by an N—Si—N chelating moiety. It is monomeric and contains two N–silylated anilido ligands, which are arranged in trans– to each other and obey the pseudoC2 symmetrical operation. Such arrangement makes Fe atom right in the triangular planes of N1···N3···Cl1 and N2···N4···Cl1. The five–coordinate iron(III) center demonstrates a highly distorted trigonal bipyramid geometry (N2 and N4 - apical atoms), which is closely similar to the amidinate and guanidinate iron(III) compounds, but significantly different from the tetragonal pyramid geometry in the porphyrin derivatives. The Fe center is chelated, with an average N—Fe—N bite angle of 74.29 (7)°. The corresponding N—Si—N of the ligand is constrained to be about 95.49 (9)°. The two values are quite different from those in the related amidinate and guanidinate Fe(III) compounds bearing the same geometry, N—Fe—N being about 66° and N—C—N being larger than 111°. The mean Fe—Nanilido bond is 1.9409 (18)Å, whereas the mean Fe—Namino bond is 2.3126 (19)Å in the title compound. In the reported amidinate and guanidinate iron(III) compounds, the Fe—N bonds are ranging in the scope of 2.0~2.1Å. It suggests that the N—Si—N group is more flexible in coordination chemistry, than the N—C—N chelating unit.

Experimental

FeCl3 (0.21 g, 1.29 mmol) was added into the solution of [LiN(SiMe2NMe2)(2,6–Me2C6H3)]2 (0.59 g, 1.29 mmol) in Et2O (25 ml) at 273 K. The reaction mixture was warmed to room temperature and kept stirring for 12 h. It was dried in vacuum to remove all volatiles and the residue was extracted with CH2Cl2 (25 ml). Concentration of the filtrate under reduced pressure gave the black solid. Recrystallization of the solid in toluene yielded the title compound as black crystals (yield 0.41 g, 60%).

Refinement

The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each methyl group was allowed to rotate freely about its C–C bond. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

[Fe(C12H21N2Si)2Cl]F000 = 2280
Mr = 534.10Dx = 1.271 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7222 reflections
a = 34.213 (5) Åθ = 2.3–27.6º
b = 9.3555 (14) ŵ = 0.74 mm1
c = 20.769 (4) ÅT = 293 (2) K
β = 122.924 (5)ºPrism, black
V = 5580.1 (16) Å30.30 × 0.25 × 0.20 mm
Z = 8

Data collection

Bruker SMART area-detector diffractometer4880 independent reflections
Radiation source: Fine–focus sealed tube4359 reflections with I > 2σ(I)
Monochromator: GraphiteRint = 0.031
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −40→33
Tmin = 0.808, Tmax = 0.866k = −11→11
11193 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: Difmap
Least-squares matrix: FullHydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0505P)2 + 4.0594P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4880 reflectionsΔρmax = 0.48 e Å3
301 parametersΔρmin = −0.25 e Å3
Primary atom site location: DirectExtinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.152240 (10)0.34361 (3)0.065107 (16)0.03404 (12)
Cl10.22982 (2)0.30852 (7)0.13642 (4)0.05195 (17)
Si10.14458 (2)0.46111 (7)0.18176 (3)0.04116 (17)
Si20.12728 (2)0.23365 (7)−0.07896 (3)0.04149 (17)
N10.12489 (6)0.31269 (19)0.12496 (10)0.0340 (4)
N20.15405 (6)0.5619 (2)0.11810 (10)0.0406 (4)
N30.12899 (6)0.3964 (2)−0.04016 (10)0.0378 (4)
N40.13464 (7)0.1293 (2)−0.00134 (11)0.0429 (5)
C10.10023 (8)0.1984 (2)0.13210 (11)0.0353 (5)
C20.12431 (9)0.0830 (3)0.18117 (12)0.0436 (5)
C30.09884 (11)−0.0285 (3)0.18479 (15)0.0602 (7)
H30.1146−0.10610.21650.072*
C40.05127 (12)−0.0272 (3)0.14302 (17)0.0735 (9)
H40.0349−0.10210.14710.088*
C50.02808 (10)0.0852 (4)0.09519 (17)0.0655 (8)
H5−0.00430.08560.06640.079*
C60.05161 (8)0.1980 (3)0.08872 (14)0.0454 (6)
C70.17639 (9)0.0764 (3)0.22785 (15)0.0592 (7)
H7A0.18840.13820.27160.089*
H7B0.18800.10670.19710.089*
H7C0.1862−0.02000.24490.089*
C80.02459 (9)0.3161 (3)0.03210 (17)0.0633 (8)
H8A−0.00760.28920.00030.095*
H8B0.03690.33180.00070.095*
H8C0.02730.40220.05940.095*
C90.10149 (11)0.5424 (3)0.19894 (18)0.0663 (8)
H9A0.07330.56280.15070.099*
H9B0.11400.62950.22750.099*
H9C0.09500.47700.22760.099*
C100.20056 (10)0.4460 (3)0.27514 (14)0.0636 (8)
H10A0.19630.39000.30960.095*
H10B0.21140.53960.29630.095*
H10C0.22310.40040.26800.095*
C110.19600 (10)0.6507 (3)0.15052 (17)0.0588 (7)
H11A0.19860.68700.10980.088*
H11B0.22290.59400.18460.088*
H11C0.19390.72900.17830.088*
C120.11329 (10)0.6484 (3)0.06259 (14)0.0519 (6)
H12A0.11050.72910.08840.078*
H12B0.08560.59110.04060.078*
H12C0.11730.68140.02270.078*
C130.12223 (9)0.5265 (3)−0.07968 (12)0.0423 (5)
C140.16070 (10)0.6008 (3)−0.07176 (14)0.0513 (6)
C150.15268 (13)0.7255 (3)−0.11318 (18)0.0683 (8)
H150.17790.7744−0.10810.082*
C160.10921 (15)0.7785 (3)−0.16087 (19)0.0781 (10)
H160.10470.8606−0.18940.094*
C170.07203 (13)0.7101 (3)−0.16673 (16)0.0698 (9)
H170.04240.7488−0.19810.084*
C180.07738 (9)0.5847 (3)−0.12716 (13)0.0518 (6)
C190.20951 (10)0.5485 (4)−0.02041 (18)0.0703 (8)
H19A0.21450.4681−0.04380.106*
H19B0.21460.52020.02800.106*
H19C0.23080.6236−0.01240.106*
C200.03569 (10)0.5156 (4)−0.13425 (16)0.0689 (8)
H20A0.01200.5862−0.14860.103*
H20B0.04440.4740−0.08590.103*
H20C0.02400.4424−0.17280.103*
C210.17490 (11)0.1969 (4)−0.09351 (19)0.0697 (8)
H21A0.17210.2593−0.13250.105*
H21B0.17310.0993−0.10920.105*
H21C0.20430.2130−0.04640.105*
C220.07192 (11)0.1936 (4)−0.17116 (15)0.0676 (8)
H22A0.04640.1994−0.16420.101*
H22B0.07340.0991−0.18780.101*
H22C0.06740.2618−0.20920.101*
C230.17204 (12)0.0207 (3)0.03273 (17)0.0708 (9)
H23A0.1764−0.01370.07980.106*
H23B0.20050.06280.04300.106*
H23C0.1635−0.0575−0.00240.106*
C240.09130 (11)0.0623 (3)−0.01730 (16)0.0653 (8)
H24A0.0824−0.0128−0.05420.098*
H24B0.06700.1328−0.03730.098*
H24C0.09620.02330.02930.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.03341 (19)0.0380 (2)0.02983 (18)0.00023 (12)0.01659 (14)0.00240 (12)
Cl10.0352 (3)0.0610 (4)0.0520 (4)0.0044 (3)0.0187 (3)0.0056 (3)
Si10.0515 (4)0.0366 (4)0.0383 (3)−0.0044 (3)0.0262 (3)−0.0041 (3)
Si20.0463 (4)0.0460 (4)0.0349 (3)−0.0003 (3)0.0238 (3)−0.0015 (3)
N10.0364 (10)0.0324 (10)0.0327 (9)−0.0003 (7)0.0184 (8)0.0014 (7)
N20.0453 (11)0.0340 (10)0.0378 (10)−0.0027 (8)0.0195 (9)−0.0011 (8)
N30.0398 (10)0.0421 (11)0.0309 (9)0.0008 (8)0.0188 (8)0.0046 (8)
N40.0540 (12)0.0366 (11)0.0417 (10)−0.0031 (9)0.0283 (10)−0.0028 (8)
C10.0443 (13)0.0349 (12)0.0311 (10)−0.0026 (9)0.0235 (10)−0.0021 (9)
C20.0594 (15)0.0361 (13)0.0357 (11)−0.0013 (11)0.0262 (11)0.0001 (10)
C30.090 (2)0.0411 (15)0.0479 (14)−0.0125 (14)0.0362 (15)0.0017 (12)
C40.094 (2)0.066 (2)0.0643 (18)−0.0380 (18)0.0450 (18)−0.0039 (16)
C50.0549 (16)0.082 (2)0.0620 (17)−0.0256 (15)0.0330 (14)−0.0072 (16)
C60.0433 (13)0.0517 (15)0.0446 (13)−0.0067 (11)0.0261 (11)−0.0054 (11)
C70.0598 (17)0.0522 (17)0.0521 (15)0.0127 (13)0.0217 (13)0.0133 (12)
C80.0403 (15)0.072 (2)0.0651 (18)0.0058 (13)0.0207 (13)0.0056 (15)
C90.093 (2)0.0542 (18)0.0779 (19)0.0006 (15)0.0636 (19)−0.0101 (15)
C100.0754 (19)0.0621 (18)0.0380 (13)−0.0143 (15)0.0210 (13)−0.0044 (12)
C110.0670 (18)0.0471 (16)0.0627 (17)−0.0190 (13)0.0355 (15)−0.0070 (13)
C120.0638 (17)0.0430 (15)0.0462 (14)0.0108 (12)0.0281 (13)0.0065 (11)
C130.0580 (15)0.0417 (14)0.0306 (11)0.0025 (11)0.0263 (11)0.0014 (9)
C140.0726 (18)0.0434 (14)0.0493 (14)−0.0058 (13)0.0406 (14)−0.0016 (11)
C150.114 (3)0.0445 (17)0.0706 (19)−0.0082 (17)0.066 (2)0.0001 (14)
C160.131 (3)0.0469 (18)0.067 (2)0.010 (2)0.060 (2)0.0141 (15)
C170.093 (2)0.0611 (19)0.0468 (15)0.0274 (17)0.0328 (16)0.0147 (14)
C180.0639 (16)0.0548 (16)0.0344 (12)0.0122 (13)0.0251 (12)0.0048 (11)
C190.0643 (18)0.073 (2)0.079 (2)−0.0185 (16)0.0427 (17)0.0017 (16)
C200.0528 (16)0.090 (2)0.0506 (15)0.0207 (16)0.0198 (13)0.0096 (15)
C210.086 (2)0.069 (2)0.084 (2)0.0023 (16)0.0652 (19)−0.0030 (16)
C220.070 (2)0.072 (2)0.0424 (14)−0.0015 (15)0.0191 (14)−0.0119 (14)
C230.100 (2)0.0492 (17)0.0574 (16)0.0246 (16)0.0392 (17)0.0058 (13)
C240.088 (2)0.0653 (19)0.0614 (16)−0.0338 (16)0.0529 (16)−0.0209 (14)

Geometric parameters (Å, °)

Fe1—N31.9406 (17)C10—H10A0.9600
Fe1—N11.9412 (18)C10—H10B0.9600
Fe1—Cl12.2523 (7)C10—H10C0.9600
Fe1—N22.3050 (19)C11—H11A0.9600
Fe1—N42.3203 (19)C11—H11B0.9600
Si1—N11.7058 (18)C11—H11C0.9600
Si1—N21.791 (2)C12—H12A0.9600
Si1—C101.847 (3)C12—H12B0.9600
Si1—C91.858 (3)C12—H12C0.9600
Si2—N31.709 (2)C13—C181.407 (3)
Si2—N41.782 (2)C13—C141.417 (4)
Si2—C211.844 (3)C14—C151.386 (4)
Si2—C221.858 (3)C14—C191.493 (4)
N1—C11.419 (3)C15—C161.355 (5)
N2—C111.467 (3)C15—H150.9300
N2—C121.477 (3)C16—C171.369 (5)
N3—C131.415 (3)C16—H160.9300
N4—C241.472 (3)C17—C181.386 (4)
N4—C231.478 (3)C17—H170.9300
C1—C61.396 (3)C18—C201.499 (4)
C1—C21.404 (3)C19—H19A0.9600
C2—C31.387 (4)C19—H19B0.9600
C2—C71.497 (4)C19—H19C0.9600
C3—C41.366 (4)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.366 (4)C20—H20C0.9600
C4—H40.9300C21—H21A0.9600
C5—C61.377 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C81.508 (4)C22—H22A0.9600
C7—H7A0.9600C22—H22B0.9600
C7—H7B0.9600C22—H22C0.9600
C7—H7C0.9600C23—H23A0.9600
C8—H8A0.9600C23—H23B0.9600
C8—H8B0.9600C23—H23C0.9600
C8—H8C0.9600C24—H24A0.9600
C9—H9A0.9600C24—H24B0.9600
C9—H9B0.9600C24—H24C0.9600
C9—H9C0.9600
N3—Fe1—N1135.57 (8)H9A—C9—H9C109.5
N3—Fe1—Cl1113.14 (6)H9B—C9—H9C109.5
N1—Fe1—Cl1111.29 (6)Si1—C10—H10A109.5
N3—Fe1—N2101.58 (7)Si1—C10—H10B109.5
N1—Fe1—N273.95 (7)H10A—C10—H10B109.5
Cl1—Fe1—N295.68 (5)Si1—C10—H10C109.5
N3—Fe1—N474.63 (7)H10A—C10—H10C109.5
N1—Fe1—N4101.10 (7)H10B—C10—H10C109.5
Cl1—Fe1—N495.59 (5)N2—C11—H11A109.5
N2—Fe1—N4168.71 (7)N2—C11—H11B109.5
N1—Si1—N294.59 (9)H11A—C11—H11B109.5
N1—Si1—C10117.27 (12)N2—C11—H11C109.5
N2—Si1—C10108.36 (11)H11A—C11—H11C109.5
N1—Si1—C9114.20 (12)H11B—C11—H11C109.5
N2—Si1—C9114.01 (12)N2—C12—H12A109.5
C10—Si1—C9107.93 (15)N2—C12—H12B109.5
N3—Si2—N496.30 (9)H12A—C12—H12B109.5
N3—Si2—C21115.89 (13)N2—C12—H12C109.5
N4—Si2—C21110.08 (13)H12A—C12—H12C109.5
N3—Si2—C22114.84 (12)H12B—C12—H12C109.5
N4—Si2—C22112.69 (13)C18—C13—N3120.8 (2)
C21—Si2—C22106.86 (15)C18—C13—C14118.8 (2)
C1—N1—Si1125.09 (14)N3—C13—C14120.4 (2)
C1—N1—Fe1134.44 (14)C15—C14—C13118.9 (3)
Si1—N1—Fe1100.08 (9)C15—C14—C19119.1 (3)
C11—N2—C12108.7 (2)C13—C14—C19122.0 (2)
C11—N2—Si1118.92 (16)C16—C15—C14122.0 (3)
C12—N2—Si1113.07 (16)C16—C15—H15119.0
C11—N2—Fe1119.09 (16)C14—C15—H15119.0
C12—N2—Fe1110.11 (14)C15—C16—C17119.5 (3)
Si1—N2—Fe185.25 (8)C15—C16—H16120.3
C13—N3—Si2122.68 (14)C17—C16—H16120.3
C13—N3—Fe1135.24 (15)C16—C17—C18121.7 (3)
Si2—N3—Fe1101.10 (9)C16—C17—H17119.1
C24—N4—C23108.6 (2)C18—C17—H17119.1
C24—N4—Si2113.57 (17)C17—C18—C13119.1 (3)
C23—N4—Si2117.99 (17)C17—C18—C20119.7 (3)
C24—N4—Fe1113.94 (16)C13—C18—C20121.3 (2)
C23—N4—Fe1115.57 (16)C14—C19—H19A109.5
Si2—N4—Fe185.87 (8)C14—C19—H19B109.5
C6—C1—C2119.3 (2)H19A—C19—H19B109.5
C6—C1—N1120.2 (2)C14—C19—H19C109.5
C2—C1—N1120.5 (2)H19A—C19—H19C109.5
C3—C2—C1118.7 (2)H19B—C19—H19C109.5
C3—C2—C7119.7 (2)C18—C20—H20A109.5
C1—C2—C7121.6 (2)C18—C20—H20B109.5
C4—C3—C2121.7 (3)H20A—C20—H20B109.5
C4—C3—H3119.1C18—C20—H20C109.5
C2—C3—H3119.1H20A—C20—H20C109.5
C5—C4—C3119.3 (3)H20B—C20—H20C109.5
C5—C4—H4120.4Si2—C21—H21A109.5
C3—C4—H4120.4Si2—C21—H21B109.5
C4—C5—C6121.4 (3)H21A—C21—H21B109.5
C4—C5—H5119.3Si2—C21—H21C109.5
C6—C5—H5119.3H21A—C21—H21C109.5
C5—C6—C1119.6 (2)H21B—C21—H21C109.5
C5—C6—C8119.6 (2)Si2—C22—H22A109.5
C1—C6—C8120.8 (2)Si2—C22—H22B109.5
C2—C7—H7A109.5H22A—C22—H22B109.5
C2—C7—H7B109.5Si2—C22—H22C109.5
H7A—C7—H7B109.5H22A—C22—H22C109.5
C2—C7—H7C109.5H22B—C22—H22C109.5
H7A—C7—H7C109.5N4—C23—H23A109.5
H7B—C7—H7C109.5N4—C23—H23B109.5
C6—C8—H8A109.5H23A—C23—H23B109.5
C6—C8—H8B109.5N4—C23—H23C109.5
H8A—C8—H8B109.5H23A—C23—H23C109.5
C6—C8—H8C109.5H23B—C23—H23C109.5
H8A—C8—H8C109.5N4—C24—H24A109.5
H8B—C8—H8C109.5N4—C24—H24B109.5
Si1—C9—H9A109.5H24A—C24—H24B109.5
Si1—C9—H9B109.5N4—C24—H24C109.5
H9A—C9—H9B109.5H24A—C24—H24C109.5
Si1—C9—H9C109.5H24B—C24—H24C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2098).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Collomb, M. N., Deronzier, A., Gorgy, K., Lepretre, J. C. & Pecaut, J. (1999). New J. Chem.23, 785–790.
  • Foley, S. R., Yap, G. P. A. & Richeson, D. S. (2000). Chem. Commun. pp. 1515–1516.
  • O’Keefe, B. J., Breyfogle, L. E., Hillmyer, M. A. & Tolman, W. B. (2002). J. Am. Chem. Soc.124, 4384–4393. [PubMed]
  • Rath, S. P., Kalish, H., Latos-Grazynski, L., Olmstead, M. M. & Balch, A. L. (2004). J. Am. Chem. Soc.126, 646–654. [PubMed]
  • Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem.626, 747–758.
  • Schunemann, V., Gerdan, M., Trautwein, A. X., Haoudi, N., Mandon, D., Fischer, J., Weiss, R., Tabard, A. & Guilard, R. (1999). Angew. Chem. Int. Ed.38, 3181–3183. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography