PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m941.
Published online 2008 June 19. doi:  10.1107/S1600536808018199
PMCID: PMC2961652

trans-Diazido­(1,8-dibenzyl-1,3,6,8,10,13-hexa­azacyclo­tetra­deca­ne)nickel(II)

Abstract

In the centrosymmetric title compound, [Ni(N3)2(C22H34N6)], the NiII ion is coordinated by the four secondary N atoms of the macrocyclic ligand in a square-planar fashion with two N atoms of the azide ions in axial positions, resulting in a tetra­gonally distorted octa­hedron. An N—H(...)N hydrogen-bonding inter­action between the secondary amine N atom of the macrocycle and an adjacent azide ion gives rise to a chain structure.

Related literature

For related literature, see: Hancock (1990 [triangle]); Jacquinot & Hauser (2003 [triangle]); Jung et al. (1989 [triangle]); Larionova et al. (2003 [triangle]); Min & Suh (2001 [triangle]); Liu et al. (2006 [triangle]); Tsuge et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m941-scheme1.jpg

Experimental

Crystal data

  • [Ni(N3)2(C22H34N6)]
  • M r = 525.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m941-efi1.jpg
  • a = 10.2150 (5) Å
  • b = 15.8337 (9) Å
  • c = 7.5477 (4) Å
  • β = 92.817 (1)°
  • V = 1219.30 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 173 (2) K
  • 0.50 × 0.20 × 0.20 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.733, T max = 0.847
  • 7464 measured reflections
  • 2820 independent reflections
  • 2456 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.092
  • S = 1.19
  • 2820 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT and SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018199/er2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018199/er2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Kyungpook National University Research Fund, 2007.

supplementary crystallographic information

Comment

Coordination compounds with tetraaza macrocyclic ligands have been widely studied in the context of metalloenzymes and the construction of extended coordination polymers (Tsuge et al., 2004; Larionova et al., 2003). Especially, NiII macrocyclic complexes having vacant sites axially are good candidates for assembling novel multi-dimensional networks and catalysts for the reduction of carbon dioxide in which they can have unique properties (Min & Suh, 2001; Jacquinot et al., 2003). Furthermore, the azide ion is a bifunctional ligand which can link to transition metal complexes, thus allowing for the assembly of polymeric compounds (Liu et al., 2006). Therefore, complexes combined with azide ions can also be building blocks for extended network structured materials. Here, we report the synthesis and structure of NiII macrocyclic complex, trans-diazido(1,8-dibenzyl-1,3,6,8,10,13- hexaazacyclotetradecane)nickel(II), with two azide ions axially.

In the title compound, the coordination geometry around NiII ion is tetragonally elongated octahedron in which NiII ion is bonded to the four secondary amine N atoms of the macrocyclic ligand in the square-planar fashion and two N atoms from the azide ions at the axial sites as shown in Fig. 1. The average Ni—Neq and Ni—Nax bond distances are 2.072 (1) and 2.159 (1) Å, respectively. The axial Ni—N bond distance is longer than the equatorial Ni—N bond lengths, which can be attributed to the Jahn-Teller distortion of the NiII ion and/or the ring contraction of the macrocyclic ligand. Two N—N bond distances of the azide ion are not significant different even though one terminal nitrogen atom is coordinated to NiII ion, indicate that the azide ion is delocalized fully (N4—N5 = 1.189 (3) Å and N5—N6 = 1.171 (3) Å). The complex has an inversion center at the nickel atom and the azamacrocyclic ligand adopts thermodynamically the most stable R,R,S,S configuration (Hancock, 1990). All azide ions coordinating NiII ions axially are involved in hydrogen bonding interactions, which results to a rigid supramolecular one-dimensional chain propagating along the c axis (Fig. 2).

Experimental

The title compound is prepared as follows. To a DMF/H2O (v/v; 1:1, 20 ml) solution of [Ni(C22H34N6)Cl2] (0.20 g, 0.40 mmol) (Jung et al., 1989) was added dropwise an aqueous solution (10 ml) containing NaN3 (0.052 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with methanol, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the aqueous solution of NaN3 on the DMF/H2O solution of [Ni(C22H34N6)Cl2] for several days.

Refinement

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Figures

Fig. 1.
Drawing of the molecular title compound at 50% probability. Atoms labeled with the suffix `a' are at the symmetry position (-x+1, -y+2, -z).
Fig. 2.
Perspective view of the title compound showing a one-dimensional chain formed by N—H···N hydrogen-bonding interactions.

Crystal data

[Ni(N3)2(C22H34N6)]F000 = 556
Mr = 525.32Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2820 reflections
a = 10.2150 (5) Åθ = 2.0–28.3º
b = 15.8337 (9) ŵ = 0.83 mm1
c = 7.5477 (4) ÅT = 173 (2) K
β = 92.817 (1)ºBlock, violet
V = 1219.30 (11) Å30.50 × 0.20 × 0.20 mm
Z = 2

Data collection

Siemens SMART CCD diffractometer2820 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 173(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→11
Tmin = 0.733, Tmax = 0.847k = −17→20
7464 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.092  w = 1/[σ2(Fo2) + (0.0239P)2 + 1.3575P] where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2820 reflectionsΔρmax = 0.42 e Å3
160 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50001.00000.00000.01702 (11)
N10.37796 (18)0.89900 (12)0.0535 (2)0.0213 (4)
H10.39640.88210.17010.026*
N20.20050 (19)0.99153 (13)0.1463 (2)0.0243 (4)
N30.38842 (18)1.08789 (12)0.1271 (2)0.0204 (4)
H30.40851.08360.24830.024*
N40.6135 (2)0.97898 (13)0.2449 (2)0.0254 (4)
N50.57874 (18)0.93204 (12)0.3563 (2)0.0221 (4)
N60.5460 (2)0.88500 (14)0.4654 (3)0.0315 (5)
C10.4175 (2)0.83010 (15)−0.0648 (3)0.0268 (5)
H1A0.37910.8395−0.18620.032*
H1B0.38520.7753−0.02130.032*
C20.2360 (2)0.92198 (15)0.0349 (3)0.0240 (5)
H2A0.21390.9369−0.09040.029*
H2B0.18310.87200.06440.029*
C30.2447 (2)1.07476 (15)0.0969 (3)0.0255 (5)
H3A0.19791.11750.16580.031*
H3B0.22081.0842−0.03030.031*
C40.4333 (2)1.17143 (15)0.0675 (3)0.0258 (5)
H4A0.40501.21590.14950.031*
H4B0.39481.1839−0.05260.031*
C50.2105 (2)0.97543 (16)0.3375 (3)0.0256 (5)
H5A0.19641.02910.40120.031*
H5B0.30020.95550.37090.031*
C60.1129 (2)0.91069 (15)0.3963 (3)0.0230 (5)
C70.1481 (3)0.85575 (17)0.5339 (3)0.0302 (5)
H70.23520.85660.58410.036*
C80.0580 (3)0.79974 (17)0.5991 (3)0.0359 (6)
H80.08300.76330.69480.043*
C9−0.0681 (3)0.79699 (16)0.5245 (3)0.0322 (6)
H9−0.12980.75820.56790.039*
C10−0.1042 (2)0.85094 (16)0.3866 (3)0.0288 (5)
H10−0.19100.84910.33520.035*
C11−0.0144 (2)0.90777 (15)0.3228 (3)0.0254 (5)
H11−0.04010.94480.22840.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0202 (2)0.01814 (19)0.01269 (18)−0.00082 (17)0.00037 (13)0.00017 (16)
N10.0243 (10)0.0257 (10)0.0140 (8)−0.0017 (8)0.0009 (7)−0.0004 (7)
N20.0238 (9)0.0284 (11)0.0210 (9)−0.0012 (8)0.0040 (7)−0.0004 (8)
N30.0245 (10)0.0224 (10)0.0144 (8)−0.0005 (8)0.0011 (7)0.0005 (7)
N40.0283 (10)0.0301 (11)0.0174 (9)0.0000 (8)−0.0017 (8)0.0042 (8)
N50.0216 (10)0.0257 (10)0.0187 (9)0.0035 (8)−0.0029 (7)−0.0055 (8)
N60.0390 (12)0.0323 (12)0.0232 (10)−0.0042 (10)0.0017 (9)0.0044 (9)
C10.0291 (13)0.0229 (12)0.0287 (12)−0.0041 (10)0.0040 (9)−0.0039 (9)
C20.0238 (11)0.0306 (13)0.0175 (10)−0.0050 (10)0.0010 (8)−0.0025 (9)
C30.0245 (12)0.0289 (13)0.0230 (11)0.0022 (10)0.0005 (9)0.0011 (9)
C40.0310 (13)0.0199 (11)0.0267 (12)0.0019 (10)0.0029 (9)−0.0011 (9)
C50.0249 (12)0.0330 (13)0.0190 (11)−0.0031 (10)0.0019 (9)−0.0041 (9)
C60.0263 (12)0.0256 (12)0.0174 (10)0.0019 (10)0.0038 (8)−0.0053 (9)
C70.0308 (13)0.0342 (14)0.0249 (12)0.0026 (11)−0.0037 (10)0.0015 (10)
C80.0493 (16)0.0319 (14)0.0263 (13)0.0015 (12)0.0006 (11)0.0077 (10)
C90.0386 (15)0.0278 (13)0.0312 (13)−0.0065 (11)0.0124 (11)−0.0010 (10)
C100.0225 (12)0.0343 (14)0.0300 (12)0.0001 (10)0.0060 (9)−0.0056 (10)
C110.0238 (12)0.0283 (12)0.0243 (11)0.0053 (10)0.0033 (9)0.0008 (9)

Geometric parameters (Å, °)

Ni1—N32.0650 (18)C2—H2B0.9900
Ni1—N3i2.0650 (18)C3—H3A0.9900
Ni1—N12.0795 (19)C3—H3B0.9900
Ni1—N1i2.0795 (19)C4—C1i1.526 (3)
Ni1—N4i2.1592 (19)C4—H4A0.9900
Ni1—N42.1592 (19)C4—H4B0.9900
N1—C11.479 (3)C5—C61.512 (3)
N1—C21.495 (3)C5—H5A0.9900
N1—H10.9300C5—H5B0.9900
N2—C21.443 (3)C6—C71.389 (3)
N2—C31.448 (3)C6—C111.389 (3)
N2—C51.464 (3)C7—C81.385 (4)
N3—C41.477 (3)C7—H70.9500
N3—C31.489 (3)C8—C91.381 (4)
N3—H30.9300C8—H80.9500
N4—N51.189 (3)C9—C101.383 (4)
N5—N61.171 (3)C9—H90.9500
C1—C4i1.526 (3)C10—C111.388 (3)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—H110.9500
C2—H2A0.9900
N3—Ni1—N3i180.0N1—C2—H2A108.8
N3—Ni1—N194.48 (7)N2—C2—H2B108.8
N3i—Ni1—N185.52 (7)N1—C2—H2B108.8
N3—Ni1—N1i85.52 (7)H2A—C2—H2B107.7
N3i—Ni1—N1i94.48 (7)N2—C3—N3113.92 (19)
N1—Ni1—N1i180.0N2—C3—H3A108.8
N3—Ni1—N4i90.49 (7)N3—C3—H3A108.8
N3i—Ni1—N4i89.51 (7)N2—C3—H3B108.8
N1—Ni1—N4i89.03 (7)N3—C3—H3B108.8
N1i—Ni1—N4i90.97 (7)H3A—C3—H3B107.7
N3—Ni1—N489.51 (7)N3—C4—C1i108.36 (19)
N3i—Ni1—N490.49 (7)N3—C4—H4A110.0
N1—Ni1—N490.97 (7)C1i—C4—H4A110.0
N1i—Ni1—N489.03 (7)N3—C4—H4B110.0
N4i—Ni1—N4180.00 (10)C1i—C4—H4B110.0
C1—N1—C2114.54 (17)H4A—C4—H4B108.4
C1—N1—Ni1105.41 (13)N2—C5—C6113.11 (19)
C2—N1—Ni1112.49 (14)N2—C5—H5A109.0
C1—N1—H1108.1C6—C5—H5A109.0
C2—N1—H1108.1N2—C5—H5B109.0
Ni1—N1—H1108.1C6—C5—H5B109.0
C2—N2—C3117.02 (18)H5A—C5—H5B107.8
C2—N2—C5115.73 (19)C7—C6—C11118.8 (2)
C3—N2—C5113.87 (19)C7—C6—C5119.6 (2)
C4—N3—C3113.36 (18)C11—C6—C5121.5 (2)
C4—N3—Ni1105.99 (13)C8—C7—C6121.0 (2)
C3—N3—Ni1113.40 (14)C8—C7—H7119.5
C4—N3—H3108.0C6—C7—H7119.5
C3—N3—H3108.0C9—C8—C7119.9 (2)
Ni1—N3—H3108.0C9—C8—H8120.1
N5—N4—Ni1122.34 (16)C7—C8—H8120.1
N6—N5—N4179.0 (2)C8—C9—C10119.7 (2)
N1—C1—C4i108.84 (19)C8—C9—H9120.1
N1—C1—H1A109.9C10—C9—H9120.1
C4i—C1—H1A109.9C9—C10—C11120.4 (2)
N1—C1—H1B109.9C9—C10—H10119.8
C4i—C1—H1B109.9C11—C10—H10119.8
H1A—C1—H1B108.3C10—C11—C6120.3 (2)
N2—C2—N1113.67 (18)C10—C11—H11119.9
N2—C2—H2A108.8C6—C11—H11119.9
N3—Ni1—N1—C1165.54 (14)C3—N2—C2—N172.2 (3)
N3i—Ni1—N1—C1−14.46 (14)C5—N2—C2—N1−66.4 (2)
N4i—Ni1—N1—C175.12 (14)C1—N1—C2—N2−177.66 (18)
N4—Ni1—N1—C1−104.88 (14)Ni1—N1—C2—N2−57.3 (2)
N3—Ni1—N1—C240.06 (14)C2—N2—C3—N3−71.2 (3)
N3i—Ni1—N1—C2−139.94 (14)C5—N2—C3—N368.1 (2)
N4i—Ni1—N1—C2−50.35 (14)C4—N3—C3—N2176.97 (18)
N4—Ni1—N1—C2129.65 (14)Ni1—N3—C3—N256.1 (2)
N1—Ni1—N3—C4−164.63 (14)C3—N3—C4—C1i−166.97 (18)
N1i—Ni1—N3—C415.37 (14)Ni1—N3—C4—C1i−41.96 (19)
N4i—Ni1—N3—C4−75.56 (14)C2—N2—C5—C6−66.6 (3)
N4—Ni1—N3—C4104.44 (14)C3—N2—C5—C6153.5 (2)
N1—Ni1—N3—C3−39.65 (15)N2—C5—C6—C7145.0 (2)
N1i—Ni1—N3—C3140.35 (15)N2—C5—C6—C11−38.7 (3)
N4i—Ni1—N3—C349.42 (15)C11—C6—C7—C8−0.9 (4)
N4—Ni1—N3—C3−130.58 (15)C5—C6—C7—C8175.5 (2)
N3—Ni1—N4—N583.63 (19)C6—C7—C8—C91.2 (4)
N3i—Ni1—N4—N5−96.37 (19)C7—C8—C9—C10−0.8 (4)
N1—Ni1—N4—N5−10.84 (19)C8—C9—C10—C110.0 (4)
N1i—Ni1—N4—N5169.16 (19)C9—C10—C11—C60.3 (4)
C2—N1—C1—C4i165.51 (18)C7—C6—C11—C100.1 (3)
Ni1—N1—C1—C4i41.3 (2)C5—C6—C11—C10−176.2 (2)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···N6ii0.932.243.145 (3)163

Symmetry codes: (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2057).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hancock, R. D. (1990). Acc. Chem. Res.23, 253–257.
  • Jacquinot, P. & Hauser, P. C. (2003). Electroanalysis, 15, 1437–1444.
  • Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc.10, 362–366.
  • Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des.3, 267–272.
  • Liu, X.-T., Wang, X.-Y., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater.18, 2852–2856.
  • Min, K. S. & Suh, M. P. (2001). Chem. Eur. J.7, 303–313. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc.126, 6564–6565. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography