PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m956.
Published online 2008 June 25. doi:  10.1107/S1600536808018539
PMCID: PMC2961650

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2011 March 01; 67(Pt 3): e14    See also: PMC Retraction Policy

Diazido­bis(2,2′-biimidazole)iron(II)

Abstract

In the title compound, [Fe(N3)2(C6H6N4)2], the Fe atom is bonded to two azide ions located in axial positions and to two equatorially positioned bidentate biimidazole ligands, forming a slightly distorterd octa­hedron. The non-H atoms of the equatorial plane are coplanar, with a mean deviation of 0.0355 (2) Å. The FeII cation lies on an inversion centre. Thus, the asymmetric unit comprises one half-mol­ecule.

Related literature

For related literature, see: Caneschi et al. (1989 [triangle]); Tsukuda et al. (2002 [triangle]); Vostrikova et al. (2000 [triangle]); Kuchar et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m956-scheme1.jpg

Experimental

Crystal data

  • [Fe(N3)2(C6H6N4)2]
  • M r = 404.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m956-efi1.jpg
  • a = 12.487 (3) Å
  • b = 9.012 (2) Å
  • c = 14.222 (3) Å
  • β = 91.91 (3)°
  • V = 1599.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.98 mm−1
  • T = 293 (2) K
  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.875, T max = 0.909
  • 1964 measured reflections
  • 1504 independent reflections
  • 1250 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.118
  • S = 1.00
  • 1504 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018539/kp2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018539/kp2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Ministry of Science and Technology of China for support (grant No. 2001CB6105–07).

supplementary crystallographic information

Comment

Different kinds of metal-radical coordination architectures with appropriate organic radicals and coligands have been an important subject during the last decade because of their potential use for molecule-based magnetic materials and optical devices (Caneschi et al., 1989; Tsukuda et al., 2002; Vostrikova et al., 2000; Kuchar et al., 2003). The organic species, such as tridentate nitronyl nitroxide radical, and bidentate nitroxide radical could result in a large number of building blocks with the potential applications. In this paper, we report the structure of the title compound, (I).

The Fe atom, located at the inversion centre, is bonded to two azide ions and the two bidentate biimidizole ligands, forming a slightly distorterd octahedron (Fig. 1). The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two nitrogen atoms from azide groups lie at the axial coordination sites. In the equatorial plane the Fe—N(imidzole) bond lengths are in the range of 2.095 (2)–2.113 (2) /%A (Table 1).

Experimental

A mixture of iron(II) dichloride anhydrous (1 mmoL), 2,2'-biimidazole(1 mmoL), and sodium azide (2 mmol) in 20 mL methanol was refluxed for several h. The above cooled solution was filterated and the filtrate was kept in the ice box. One week later, colourless blocks of (I) were obtained with the yield of ca 8%. Anal. Calc. for C12H8FeN14: C 35.63, H 1.98, N 48.49%; Found: C 35.58, H 1.96, N 48.45%.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I) around FeII drawn with the 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Fe(N3)2(C6H6N4)2]F000 = 816
Mr = 404.17Dx = 1.678 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1504 reflections
a = 12.487 (3) Åθ = 2.8–25.7º
b = 9.012 (2) ŵ = 0.98 mm1
c = 14.222 (3) ÅT = 293 (2) K
β = 91.91 (3)ºBlock, colourless
V = 1599.6 (6) Å30.14 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1504 independent reflections
Radiation source: fine-focus sealed tube1250 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 293(2) Kθmax = 25.7º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −1→15
Tmin = 0.875, Tmax = 0.909k = −1→10
1964 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.075P)2 + 1.004P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.006
1504 reflectionsΔρmax = 0.65 e Å3
124 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.75001.25000.50000.0610 (9)
C10.6773 (3)1.0317 (4)0.3216 (2)0.0554 (7)
H10.62791.09050.28830.067*
C20.7058 (3)0.8903 (4)0.2969 (2)0.0583 (8)
H20.68050.83740.24460.070*
C30.9629 (2)0.9250 (4)0.6284 (2)0.0555 (8)
H31.01260.88250.67040.067*
C40.9159 (2)1.0612 (4)0.63750 (19)0.0543 (7)
H40.92901.12700.68690.065*
C50.7896 (2)0.9564 (3)0.42568 (19)0.0456 (6)
C60.8539 (2)0.9633 (3)0.51069 (18)0.0454 (6)
N10.60420 (19)1.0322 (3)0.57863 (17)0.0519 (6)
N20.6173 (2)1.1634 (3)0.57318 (18)0.0544 (6)
N30.5894 (2)0.9020 (3)0.5859 (2)0.0697 (8)
N40.73154 (18)1.0735 (3)0.40187 (16)0.0499 (6)
N50.84709 (18)1.0851 (3)0.56302 (15)0.0491 (6)
N60.92402 (18)0.8623 (3)0.54644 (16)0.0498 (6)
N70.7786 (2)0.8422 (3)0.36365 (16)0.0517 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.064 (2)0.067 (2)0.0510 (18)−0.0005 (18)−0.0087 (15)0.0092 (16)
C10.0573 (17)0.0577 (18)0.0505 (15)0.0058 (14)−0.0099 (13)−0.0031 (14)
C20.0618 (18)0.064 (2)0.0489 (16)−0.0009 (16)−0.0092 (14)−0.0094 (14)
C30.0499 (16)0.069 (2)0.0472 (15)0.0174 (15)−0.0050 (12)0.0040 (14)
C40.0513 (16)0.0661 (19)0.0448 (14)0.0160 (15)−0.0081 (12)−0.0049 (13)
C50.0440 (14)0.0452 (15)0.0473 (14)0.0058 (12)0.0004 (11)−0.0026 (12)
C60.0454 (14)0.0474 (16)0.0435 (13)0.0084 (12)0.0018 (11)−0.0004 (11)
N10.0492 (14)0.0514 (16)0.0547 (14)0.0132 (11)−0.0061 (11)−0.0075 (11)
N20.0528 (14)0.0487 (16)0.0614 (15)0.0104 (12)−0.0006 (11)−0.0037 (12)
N30.0706 (18)0.0500 (17)0.088 (2)0.0088 (14)−0.0093 (15)−0.0077 (15)
N40.0497 (13)0.0521 (15)0.0474 (12)0.0085 (11)−0.0060 (10)−0.0052 (11)
N50.0462 (13)0.0545 (15)0.0463 (12)0.0117 (11)−0.0042 (10)−0.0045 (11)
N60.0476 (13)0.0525 (14)0.0491 (12)0.0130 (11)0.0005 (10)0.0034 (11)
N70.0553 (14)0.0513 (15)0.0482 (12)0.0048 (12)−0.0012 (10)−0.0068 (11)

Geometric parameters (Å, °)

Fe1—N52.100 (2)C3—C41.368 (4)
Fe1—N5i2.100 (2)C3—H30.9300
Fe1—N4i2.123 (2)C4—N51.359 (3)
Fe1—N42.123 (2)C4—H40.9300
Fe1—N2i2.134 (3)C5—N41.318 (4)
Fe1—N22.134 (3)C5—N71.360 (4)
C1—N41.361 (4)C5—C61.430 (4)
C1—C21.373 (4)C6—N51.330 (4)
C1—H10.9300C6—N61.351 (4)
C2—N71.363 (4)N1—N31.193 (4)
C2—H20.9300N1—N21.197 (3)
C3—N61.369 (4)
N5—Fe1—N5i180.000 (1)N6—C3—H3126.0
N5—Fe1—N4i101.60 (9)C4—C3—H3126.0
N5i—Fe1—N4i78.40 (9)N5—C4—C3109.3 (3)
N5—Fe1—N478.40 (9)N5—C4—H4125.4
N5i—Fe1—N4101.60 (9)C3—C4—H4125.4
N4i—Fe1—N4180.000 (1)N4—C5—N7113.3 (2)
N5—Fe1—N2i91.16 (10)N4—C5—C6118.1 (2)
N5i—Fe1—N2i88.84 (10)N7—C5—C6128.6 (3)
N4i—Fe1—N2i88.71 (10)N5—C6—N6113.4 (2)
N4—Fe1—N2i91.29 (10)N5—C6—C5117.7 (2)
N5—Fe1—N288.84 (10)N6—C6—C5128.9 (3)
N5i—Fe1—N291.16 (10)N3—N1—N2178.3 (3)
N4i—Fe1—N291.29 (10)N1—N2—Fe1120.2 (2)
N4—Fe1—N288.71 (10)C5—N4—C1104.4 (2)
N2i—Fe1—N2180.0C5—N4—Fe1112.58 (18)
N4—C1—C2110.2 (3)C1—N4—Fe1143.0 (2)
N4—C1—H1124.9C6—N5—C4104.8 (2)
C2—C1—H1124.9C6—N5—Fe1113.05 (17)
N7—C2—C1106.8 (3)C4—N5—Fe1141.8 (2)
N7—C2—H2126.6C6—N6—C3104.4 (2)
C1—C2—H2126.6C5—N7—C2105.2 (2)
N6—C3—C4108.0 (2)

Symmetry codes: (i) −x+3/2, −y+5/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2177).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. (1989). J. Am. Chem. Soc.111, 785–786.
  • Kuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem.6, 127–132.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tsukuda, T., Suzuki, T. & Kaizaki, S. (2002). J. Chem. Soc. Dalton Trans. pp. 1721–1726.
  • Vostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc.122, 718–719.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography