PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1237.
Published online 2008 June 7. doi:  10.1107/S1600536808015663
PMCID: PMC2961649

Ethyl 2-[(Z)-2-cyano­imino-1,3-thiazolidin-3-yl]acetate

Abstract

In the title mol­ecule, C8H11N3O2S, the puckering amplitude of the thia­zolidine ring is q 2 = 0.3011 (5) Å and the conformation is an envelope. There are weak inter­molecular C—H(...)O inter­actions which stabilize the crystal structure.

Related literature

For the crystal structures of related compounds, see: Dai et al. (2007 [triangle]). For details of the biological activities of thia­zolidine-containing compounds, see: Iwata et al. (1988 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For puckering amplitude definitions, see: Cremer & Pople (1975 [triangle]). For conformation definitions, see: Duax et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1237-scheme1.jpg

Experimental

Crystal data

  • C8H11N3O2S
  • M r = 213.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1237-efi1.jpg
  • a = 30.862 (6) Å
  • b = 4.9376 (10) Å
  • c = 14.067 (3) Å
  • β = 105.09 (3)°
  • V = 2069.7 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 (2) K
  • 0.34 × 0.21 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.907, T max = 0.958
  • 7488 measured reflections
  • 1826 independent reflections
  • 1491 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.117
  • S = 1.10
  • 1826 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015663/hg2405sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015663/hg2405Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing Thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988). Here, we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths are normal (Allen et al., 1987) and in a good agreement with those reported previously (Dai et al., 2007). The plane I (C7/C8/N1–N3/S1) makes the dihedral angles of 86.11 (3)° with ethyl acetate group (C1–C4/O1/O2). The Cremer & Pople (1975) puckering amplitude of the thiazolidine ring is q2 = 0.3011 (5) Å. According to Duax et al. (1976), the conformation is an envelope with a local pseudo-mirror passing through C6 and the mid-point of the N1—C7 bond. There are some weak C—H···O intermolecular interactions (see Table 1) which stabilize the title structure.

Experimental

A solution of (Z)-(thiazolidin-2-ylideneamino)formonitrile 1.27 g (10 mmol) and sodium hydride 0.3 g dissolved in anhydrous acetonitrile (20 ml), and dropwise added over a period of 10 min to a solution of ethyl 2-chloroacetate 1.23 (10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by recrystall from ethanol to give I as a white solid (1.92 g, 90%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 or 0.97 Å, with Uiso(H) = 1.2 times Ueq(C) and 1.5 times Ueq(C) for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C8H11N3O2SF000 = 896
Mr = 213.26Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1021 reflections
a = 30.862 (6) Åθ = 2.9–26.4º
b = 4.9376 (10) ŵ = 0.29 mm1
c = 14.067 (3) ÅT = 293 (2) K
β = 105.09 (3)ºBlock, colourless
V = 2069.7 (7) Å30.34 × 0.21 × 0.15 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer1826 independent reflections
Radiation source: rotating anode1491 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 293(2) Kθmax = 25.0º
ω oscillation scansθmin = 3.0º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −36→36
Tmin = 0.907, Tmax = 0.958k = −5→5
7488 measured reflectionsl = −16→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.0531P)2 + 1.3476P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.25 e Å3
1826 reflectionsΔρmin = −0.31 e Å3
128 parametersExtinction correction: SHELXTL (Sheldrick, 20018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.462350 (18)0.24900 (11)0.03972 (4)0.0520 (2)
O10.27777 (5)0.6328 (3)−0.12161 (13)0.0627 (5)
O20.31720 (5)0.3188 (3)−0.02097 (14)0.0670 (5)
N10.39666 (6)0.5821 (3)−0.01316 (12)0.0453 (4)
N20.40242 (6)0.2991 (4)−0.13944 (13)0.0514 (5)
N30.44256 (9)−0.0586 (5)−0.20421 (18)0.0847 (7)
C10.19858 (10)0.6384 (8)−0.1823 (3)0.0959 (10)
H1A0.17120.5457−0.18280.144*
H1B0.20170.6507−0.24830.144*
H1C0.19790.8173−0.15590.144*
C20.23648 (8)0.4890 (6)−0.1212 (2)0.0781 (8)
H2B0.23730.3074−0.14710.094*
H2C0.23350.4751−0.05450.094*
C30.31533 (7)0.5240 (4)−0.06723 (16)0.0498 (5)
C40.35509 (7)0.6959 (4)−0.07168 (18)0.0525 (6)
H4A0.35650.7112−0.13960.063*
H4B0.35130.8765−0.04790.063*
C50.40994 (8)0.6115 (5)0.09383 (16)0.0553 (6)
H5A0.39040.50600.12350.066*
H5B0.40840.79980.11220.066*
C60.45751 (8)0.5090 (5)0.12722 (15)0.0557 (6)
H6A0.46340.43430.19310.067*
H6B0.47860.65450.12730.067*
C70.41698 (6)0.3814 (4)−0.04819 (14)0.0413 (5)
C80.42527 (8)0.1075 (5)−0.17063 (16)0.0572 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0464 (4)0.0506 (4)0.0556 (4)0.0037 (2)0.0072 (3)0.0093 (2)
O10.0403 (9)0.0630 (10)0.0806 (11)−0.0003 (7)0.0080 (8)0.0119 (9)
O20.0538 (10)0.0559 (10)0.0910 (13)−0.0012 (8)0.0182 (9)0.0175 (9)
N10.0406 (10)0.0458 (9)0.0491 (9)0.0004 (7)0.0109 (7)−0.0011 (8)
N20.0505 (11)0.0558 (11)0.0465 (10)−0.0031 (8)0.0101 (8)−0.0021 (8)
N30.109 (2)0.0805 (16)0.0738 (14)0.0062 (15)0.0411 (14)−0.0142 (13)
C10.0479 (16)0.121 (3)0.110 (2)0.0012 (17)0.0040 (16)0.013 (2)
C20.0450 (14)0.0844 (18)0.103 (2)−0.0084 (13)0.0157 (14)0.0109 (16)
C30.0440 (12)0.0441 (12)0.0618 (13)0.0041 (9)0.0147 (10)−0.0015 (10)
C40.0422 (12)0.0447 (11)0.0694 (14)0.0037 (9)0.0121 (10)0.0062 (10)
C50.0601 (14)0.0567 (13)0.0515 (12)−0.0083 (11)0.0186 (10)−0.0062 (10)
C60.0595 (14)0.0600 (13)0.0433 (11)−0.0119 (11)0.0058 (10)0.0036 (10)
C70.0379 (11)0.0413 (11)0.0460 (11)−0.0057 (8)0.0128 (8)0.0061 (8)
C80.0664 (16)0.0598 (14)0.0473 (12)−0.0082 (12)0.0183 (11)−0.0048 (11)

Geometric parameters (Å, °)

S1—C71.736 (2)C1—H1B0.9600
S1—C61.811 (2)C1—H1C0.9600
O1—C31.325 (3)C2—H2B0.9700
O1—C21.460 (3)C2—H2C0.9700
O2—C31.198 (3)C3—C41.507 (3)
N1—C71.334 (3)C4—H4A0.9700
N1—C41.446 (3)C4—H4B0.9700
N1—C51.460 (3)C5—C61.508 (3)
N2—C71.309 (3)C5—H5A0.9700
N2—C81.322 (3)C5—H5B0.9700
N3—C81.145 (3)C6—H6A0.9700
C1—C21.459 (4)C6—H6B0.9700
C1—H1A0.9600
C7—S1—C691.34 (10)N1—C4—H4A109.3
C3—O1—C2115.73 (19)C3—C4—H4A109.3
C7—N1—C4120.76 (17)N1—C4—H4B109.3
C7—N1—C5114.95 (17)C3—C4—H4B109.3
C4—N1—C5121.17 (18)H4A—C4—H4B108.0
C7—N2—C8118.10 (19)N1—C5—C6106.08 (18)
C2—C1—H1A109.5N1—C5—H5A110.5
C2—C1—H1B109.5C6—C5—H5A110.5
H1A—C1—H1B109.5N1—C5—H5B110.5
C2—C1—H1C109.5C6—C5—H5B110.5
H1A—C1—H1C109.5H5A—C5—H5B108.7
H1B—C1—H1C109.5C5—C6—S1105.78 (15)
C1—C2—O1108.6 (2)C5—C6—H6A110.6
C1—C2—H2B110.0S1—C6—H6A110.6
O1—C2—H2B110.0C5—C6—H6B110.6
C1—C2—H2C110.0S1—C6—H6B110.6
O1—C2—H2C110.0H6A—C6—H6B108.7
H2B—C2—H2C108.4N2—C7—N1121.22 (19)
O2—C3—O1124.6 (2)N2—C7—S1126.07 (17)
O2—C3—C4125.1 (2)N1—C7—S1112.71 (14)
O1—C3—C4110.33 (18)N3—C8—N2174.8 (3)
N1—C4—C3111.65 (18)
C3—O1—C2—C1178.6 (2)C7—S1—C6—C521.72 (16)
C2—O1—C3—O21.4 (3)C8—N2—C7—N1177.09 (19)
C2—O1—C3—C4−178.3 (2)C8—N2—C7—S1−3.9 (3)
C7—N1—C4—C381.0 (2)C4—N1—C7—N26.6 (3)
C5—N1—C4—C3−78.0 (2)C5—N1—C7—N2166.86 (19)
O2—C3—C4—N10.4 (3)C4—N1—C7—S1−172.54 (15)
O1—C3—C4—N1−179.87 (18)C5—N1—C7—S1−12.3 (2)
C7—N1—C5—C628.7 (2)C6—S1—C7—N2174.48 (19)
C4—N1—C5—C6−171.18 (17)C6—S1—C7—N1−6.41 (16)
N1—C5—C6—S1−30.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2C···O2i0.972.563.284 (3)132
C4—H4B···O2ii0.972.503.431 (3)162

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2405).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dai, H., Zhang, X., Qin, X., Qin, Z.-F. & Fang, J.-X. (2007). Acta Cryst. E63, o4283.
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: John Wiley.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261–262.
  • Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography