PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1212.
Published online 2008 June 7. doi:  10.1107/S1600536808016772
PMCID: PMC2961646

2-(1-Adamant­yl)-4-bromo­anisole at 123 K

Abstract

In the title compound [systematic name: 2-(1-adamantyl)-4-bromo-1-­methoxy­benzene], C17H21BrO, two weak intra­molecular C—H(...)O hydrogen bonds influence the mol­ecular conformation. The crystal packing exhibits C—H(...)π inter­actions, with a relatively short inter­molecular C(...)Cg contact of 3.568 (5) Å, where Cg is the centroid of the benzene ring. The crystal studied exhibited inversion twinning.

Related literature

For related crystal structures, see: Nordman & Schmitkons (1965 [triangle]); Amoureux et al. (1980 [triangle]); Amoureux & Bee (1980 [triangle]); Pouwer et al. (2007 [triangle]). For general background, see: Chomienne et al. (1994 [triangle]). For synthesis, see: Antibes et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1212-scheme1.jpg

Experimental

Crystal data

  • C17H21BrO
  • M r = 321.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1212-efi1.jpg
  • a = 7.3815 (11) Å
  • b = 13.2067 (19) Å
  • c = 15.067 (2) Å
  • V = 1468.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.79 mm−1
  • T = 123 (2) K
  • 0.30 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.438, T max = 0.492
  • 12697 measured reflections
  • 2580 independent reflections
  • 2279 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 0.86
  • 2580 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.59 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1072 Friedel pairs
  • Flack parameter: 0.340 (15)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016772/cv2416sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016772/cv2416Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support from Zhejiang Police College, China.

supplementary crystallographic information

Comment

The molecule of adamantane has high symmetry, Td, and adamantane crystallizes in the highest space group, Fm3 m (Nordman & Schmitkons, 1965; Amoureux et al., 1980; Amoureux & Bee, 1980). In view of the development of crystal structure systems and the design of organic crystals, it is of interest to study the effects of some simple functional substituents having hydrogen-bonding ability on the symmetry of the crystals of adamantane derivatives. The title compound is an important intermediate of adapalene, which is a new synthetic retinoid of the naphthoic acid series, and was developed for the topical treatment of Acne vulgaris and prevention of some forms of cancer, including the acute promyelocytic leukaemia (Chomienne et al., 1994). Here we report the crystal structure of the title compound (Fig. 1).

In the title compound, the structural parameters of the adamantyl are closely comparable to those found in reported molecule (Pouwer et al., 2007). The C atoms of the adamantine moiety have Csp3 hybridized orbitals, with C—C—C angles in the range 106.6 (4)–111.6 (4)°. The methoxy group and bromo group are coplanar with the benzene ring.

It is of note that the O atoms of the methoxy group participates in formation of two intramolecular C—H···O interactions,and both intramolecular C—H···O interactions are nearly the same (Table.1). Meanwhile, in the crystal structure, an intermolecular C—H···π interaction involving the benzene ring (with the centroid Cg) is observed (Table 1).

Experimental

The title compound was prepared according to the literature method (Antibes et al., 1988). Crystals suitable for X-ray analysis were obtained by slow evaporation of an 2-propanol solution at 295 K.

Refinement

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C17H21BrOF000 = 664
Mr = 321.25Dx = 1.453 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2580 reflections
a = 7.3815 (11) Åθ = 2–25.0º
b = 13.2067 (19) ŵ = 2.79 mm1
c = 15.067 (2) ÅT = 123 (2) K
V = 1468.8 (4) Å3Block, colourless
Z = 40.30 × 0.26 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer2580 independent reflections
Radiation source: fine-focus sealed tube2279 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.049
T = 123(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −8→8
Tmin = 0.438, Tmax = 0.492k = −15→14
12697 measured reflectionsl = −17→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0694P)2 + 1.9231P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 0.86Δρmax = 0.51 e Å3
2580 reflectionsΔρmin = −0.59 e Å3
172 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1072 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.340 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.49661 (7)0.52137 (3)0.02595 (3)0.05940 (19)
O10.3914 (4)0.9390 (2)0.17914 (19)0.0495 (7)
C80.1674 (5)0.7808 (3)0.2493 (2)0.0306 (8)
C170.2606 (5)0.8175 (3)0.3350 (2)0.0334 (8)
H17A0.34960.76620.35480.040*
H17B0.32690.88120.32280.040*
C20.4172 (5)0.8448 (3)0.1434 (2)0.0363 (9)
C11−0.2109 (5)0.7762 (4)0.3180 (3)0.0512 (11)
H11A−0.27680.75160.26500.061*
H11B−0.29990.78710.36620.061*
C12−0.0155 (7)0.9143 (3)0.3787 (3)0.0495 (10)
H12A0.04720.97850.36460.059*
H12B−0.10340.92750.42700.059*
C90.0205 (6)0.8587 (3)0.2208 (2)0.0403 (9)
H9A0.07900.92370.20520.048*
H9B−0.04410.83330.16770.048*
C70.3094 (5)0.7656 (3)0.1763 (2)0.0307 (8)
C140.0274 (6)0.7365 (3)0.4301 (2)0.0439 (10)
H14A−0.06100.74690.47860.053*
H14B0.11750.68580.44990.053*
C160.0668 (5)0.6818 (3)0.2726 (3)0.0374 (9)
H16A0.00370.65620.21910.045*
H16B0.15590.63000.29130.045*
C60.3380 (5)0.6697 (3)0.1394 (2)0.0346 (8)
H60.26730.61410.15940.042*
C40.5731 (6)0.7319 (4)0.0433 (3)0.0469 (10)
H40.66330.7200−0.00050.056*
C10.4924 (7)1.0210 (3)0.1470 (3)0.0544 (10)
H1A0.46011.08230.18000.082*
H1B0.46601.03090.08390.082*
H1C0.62191.00700.15470.082*
C30.5459 (6)0.8275 (3)0.0770 (3)0.0472 (11)
H30.61550.88250.05490.057*
C15−0.0708 (5)0.6981 (3)0.3467 (3)0.0428 (9)
H15−0.13280.63260.36040.051*
C130.1216 (5)0.8356 (3)0.4087 (2)0.0380 (9)
H130.18540.86070.46290.046*
C10−0.1150 (6)0.8754 (4)0.2966 (3)0.0472 (11)
H10−0.20680.92670.27770.057*
C50.4671 (5)0.6541 (3)0.0743 (2)0.0400 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0757 (3)0.0442 (3)0.0583 (3)0.0164 (3)0.0146 (3)−0.00538 (19)
O10.0647 (19)0.0356 (16)0.0483 (16)−0.0131 (14)0.0155 (15)−0.0039 (14)
C80.0306 (19)0.030 (2)0.0313 (19)0.0015 (15)0.0001 (14)0.0022 (15)
C170.0330 (18)0.038 (2)0.0294 (18)−0.0019 (16)−0.0002 (15)0.0021 (16)
C20.041 (2)0.037 (2)0.0314 (18)−0.0044 (18)0.0016 (16)0.0021 (16)
C110.029 (2)0.071 (3)0.053 (3)0.001 (2)0.0018 (19)0.000 (2)
C120.056 (2)0.050 (3)0.043 (2)0.014 (2)0.009 (2)−0.0064 (17)
C90.040 (2)0.045 (2)0.0352 (17)0.006 (2)−0.0033 (17)0.0085 (15)
C70.0307 (17)0.034 (2)0.0274 (17)−0.0012 (15)−0.0032 (14)0.0003 (15)
C140.040 (2)0.057 (3)0.0337 (18)0.005 (2)0.0062 (17)0.0110 (17)
C160.036 (2)0.034 (2)0.043 (2)−0.0045 (16)0.0017 (15)0.0047 (18)
C60.035 (2)0.037 (2)0.0327 (18)−0.0003 (16)0.0008 (14)0.0045 (16)
C40.045 (2)0.057 (3)0.039 (2)−0.002 (2)0.0116 (17)−0.0006 (19)
C10.056 (2)0.040 (2)0.068 (3)−0.010 (3)0.000 (2)0.0100 (19)
C30.050 (3)0.051 (3)0.040 (2)−0.013 (2)0.0087 (18)0.0027 (19)
C150.037 (2)0.046 (2)0.046 (2)−0.0059 (17)0.0053 (17)0.0051 (19)
C130.040 (2)0.046 (2)0.0274 (18)0.0017 (17)0.0017 (16)−0.0017 (17)
C100.036 (2)0.060 (3)0.046 (2)0.018 (2)−0.0030 (18)0.007 (2)
C50.045 (2)0.040 (2)0.0353 (18)0.0066 (18)0.0013 (17)−0.0023 (16)

Geometric parameters (Å, °)

Br1—C51.911 (4)C9—H9B0.9900
O1—C21.369 (5)C7—C61.399 (5)
O1—C11.400 (5)C14—C131.516 (6)
C8—C71.533 (5)C14—C151.536 (6)
C8—C171.541 (5)C14—H14A0.9900
C8—C161.544 (5)C14—H14B0.9900
C8—C91.555 (5)C16—C151.525 (6)
C17—C131.531 (5)C16—H16A0.9900
C17—H17A0.9900C16—H16B0.9900
C17—H17B0.9900C6—C51.383 (5)
C2—C31.398 (5)C6—H60.9500
C2—C71.405 (5)C4—C51.373 (6)
C11—C101.523 (7)C4—C31.375 (6)
C11—C151.524 (6)C4—H40.9500
C11—H11A0.9900C1—H1A0.9800
C11—H11B0.9900C1—H1B0.9800
C12—C131.519 (6)C1—H1C0.9800
C12—C101.528 (6)C3—H30.9500
C12—H12A0.9900C15—H151.0000
C12—H12B0.9900C13—H131.0000
C9—C101.535 (6)C10—H101.0000
C9—H9A0.9900
C2—O1—C1119.5 (3)C15—C16—C8111.5 (3)
C7—C8—C17109.7 (3)C15—C16—H16A109.3
C7—C8—C16112.4 (3)C8—C16—H16A109.3
C17—C8—C16106.9 (3)C15—C16—H16B109.3
C7—C8—C9111.4 (3)C8—C16—H16B109.3
C17—C8—C9109.6 (3)H16A—C16—H16B108.0
C16—C8—C9106.7 (3)C5—C6—C7121.4 (4)
C13—C17—C8110.9 (3)C5—C6—H6119.3
C13—C17—H17A109.4C7—C6—H6119.3
C8—C17—H17A109.4C5—C4—C3118.5 (4)
C13—C17—H17B109.4C5—C4—H4120.7
C8—C17—H17B109.4C3—C4—H4120.7
H17A—C17—H17B108.0O1—C1—H1A109.5
O1—C2—C3121.6 (4)O1—C1—H1B109.5
O1—C2—C7117.4 (3)H1A—C1—H1B109.5
C3—C2—C7121.0 (4)O1—C1—H1C109.5
C10—C11—C15109.1 (3)H1A—C1—H1C109.5
C10—C11—H11A109.9H1B—C1—H1C109.5
C15—C11—H11A109.9C4—C3—C2120.9 (4)
C10—C11—H11B109.9C4—C3—H3119.6
C15—C11—H11B109.9C2—C3—H3119.6
H11A—C11—H11B108.3C11—C15—C16109.9 (3)
C13—C12—C10109.3 (3)C11—C15—C14109.2 (4)
C13—C12—H12A109.8C16—C15—C14109.4 (3)
C10—C12—H12A109.8C11—C15—H15109.5
C13—C12—H12B109.8C16—C15—H15109.5
C10—C12—H12B109.8C14—C15—H15109.5
H12A—C12—H12B108.3C14—C13—C12110.3 (3)
C10—C9—C8110.1 (3)C14—C13—C17109.1 (3)
C10—C9—H9A109.6C12—C13—C17109.7 (3)
C8—C9—H9A109.6C14—C13—H13109.2
C10—C9—H9B109.6C12—C13—H13109.2
C8—C9—H9B109.6C17—C13—H13109.2
H9A—C9—H9B108.2C11—C10—C12109.9 (4)
C6—C7—C2116.7 (3)C11—C10—C9109.7 (4)
C6—C7—C8120.5 (3)C12—C10—C9109.7 (3)
C2—C7—C8122.8 (3)C11—C10—H10109.1
C13—C14—C15109.1 (3)C12—C10—H10109.1
C13—C14—H14A109.9C9—C10—H10109.1
C15—C14—H14A109.9C4—C5—C6121.5 (4)
C13—C14—H14B109.9C4—C5—Br1119.5 (3)
C15—C14—H14B109.9C6—C5—Br1119.0 (3)
H14A—C14—H14B108.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.992.353.003 (5)123
C17—H17B···O10.992.353.004 (4)123
C4—H4···Cgi0.952.663.568 (5)161

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2416).

References

  • Amoureux, J. P. & Bee, M. (1980). Acta Cryst. B36, 2636–2642.
  • Amoureux, J. P., Bee, M. & Damien, J. C. (1980). Acta Cryst. B36, 2633–2636.
  • Antibes, B. S., Grasse, J. E. & Nice, J. B. (1988). US Patent 4 717 720.
  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chomienne, C., Ballerini, P., Balitrand, N., Amor, M., Bernard, J. F., Boivin, P., Daniel, M. T., Berger, R., Castaigne, S. & Degos, L. (1994). Lancet ii, 344, 746–747.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst.18, 764–767.
  • Pouwer, R. H., Harper, J. B., Vyakaranam, K., Michl, J., Williams, C. M., Jessen, C. H. & Bernhardt, P. V. (2007). Eur. J. Org. Chem. pp. 241–248.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography