PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m967.
Published online 2008 June 28. doi:  10.1107/S1600536808018904
PMCID: PMC2961642

trans-Dichloridobis(triisopropyl­phosphine-κP)palladium(II)

Abstract

The title compound, [PdCl2(C9H21P)2], is a centrosymmetric mononuclear palladium(II) complex. The PdII atom, which lies on an inversion center, is in a square-planar geometry.

Related literature

For trans-dichlorido-bis­(triphenyl­phosphine)palladium(II), see: Ferguson et al. (1982 [triangle]). For trans-dichlorido-bis­[diphenyl (cyclo­hexyl)phosphine]palladium(II), see: Meij et al. (2003 [triangle]). For trans-dichlorido-bis­[diphen­yl(p-tol­yl)phosphine]palla­dium(II), see: Steyl et al. (2006 [triangle]). For related literature, see: Baum et al. (2006 [triangle]); Bedford et al. (2003 [triangle]); Schultz et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m967-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C9H21P)2]
  • M r = 497.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m967-efi1.jpg
  • a = 8.0919 (3) Å
  • b = 8.9176 (4) Å
  • c = 16.1920 (6) Å
  • β = 92.552 (3)°
  • V = 1167.26 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 120 (2) K
  • 0.15 × 0.09 × 0.02 mm

Data collection

  • Oxford Diffraction KM-4-CCD diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.791, T max = 0.955
  • 7043 measured reflections
  • 2175 independent reflections
  • 1985 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.089
  • S = 1.13
  • 2175 reflections
  • 112 parameters
  • H-atom parameters constrained
  • Δρmax = 1.44 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018904/ci2618sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018904/ci2618Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Expanding our work upon the reactivity of [(R3P)2MCl2] (M = Ni, Pd, Pt) towards tBu2P–PLi–PtBu2 (Baum et al., 2006), we have studied the reaction of tBu2P-PLi-P(tBu)(SiMe3).2THF with [trans-(iPr3P)2PdCl2] in a 1:1 molar ratio in THF. Unreacted [trans-(iPr3P)2PdCl2] was isolated from the toluene solution of reaction product as yellow crystals.

The molecular structure of the title compound is shown in Fig.1. The mononuclear complex is centrosymmetric, with the PdII atom lying on an inversion centre. The geometry around the PdII atom is strictly square-planar. The Pd—P [2.3603 (6) Å] and Pd—Cl [2.3030 (6) Å] distances and P—Pd—Cl [89.92 (2)° and 90.18 (2)°] angles are typical for [trans-(R3P)2PdCl2] (Ferguson et al., 1982; Meij et al., 2003; Steyl et al., 2006; Bedford et al., 2003). The distances in [cis-(R3P)2PdCl2] differ significantly from those reported for [trans-(R3P)2PdCl2]. For [cis-(Me3P)2PdCl2], the related distances are 2.374 (3) Å (Pd—Cl, mean value) and 2.258 (2) Å (Pd—P, mean value) (Schultz et al., 1992). The elongation of Pd—Cl distances in cis isomers compared to trans isomers is due to a strong trans effect of PR3 ligand in a position trans to Cl ligand. The shortening of Pd—P distances in cis isomers are caused by a lack of a second phosphine ligand in the trans position. The Cl ligand exerts only weak trans effect.

Experimental

A solution of tBu2P-PLi-P(tBu)(SiMe3).2THF (139 mg, 0.285 mmol) in tetrahydrofuran (THF, 2 mL) was added dropwise to a suspension of yellow powder of [(iPr3P)2PdCl2] (139 mg, 0.28 mmol) in THF (2 ml) at room temperature. The mixture turned red. After allowed to stand at room temperature for 1 d, the mixture was dried under vacuum at 1 mTorr for 1 h, and the residue was dissolved in toluene (4 ml) and filtered. The solution was kept at 277 K for 2d to obtain small yellow crystals of [trans-(iPr3P)2PdCl2].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The highest residual electron-density peak is located 0.86 Å from atom Cl1.

Figures

Fig. 1.
A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by the symmetry operation (1-x, 1-y, ...
Fig. 2.
Crystal packing of the title compound, viewed approximately along the b axis.

Crystal data

[PdCl2(C9H21P)2]F000 = 520
Mr = 497.76Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7947 reflections
a = 8.0919 (3) Åθ = 2.3–32.5º
b = 8.9176 (4) ŵ = 1.16 mm1
c = 16.1920 (6) ÅT = 120 (2) K
β = 92.552 (3)ºPrism, colourless
V = 1167.26 (8) Å30.15 × 0.09 × 0.02 mm
Z = 2

Data collection

Oxford Diffraction KM-4-CCD diffractometer2175 independent reflections
Monochromator: graphite1985 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.042
T = 120(2) Kθmax = 25.5º
0.75° wide ω scansθmin = 2.5º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006)h = −9→9
Tmin = 0.791, Tmax = 0.955k = −10→6
7043 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2267P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2175 reflectionsΔρmax = 1.44 e Å3
112 parametersΔρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.50.500.01758 (14)
P10.62758 (8)0.33350 (7)0.09656 (4)0.01777 (17)
Cl10.53892 (10)0.69501 (7)0.09206 (4)0.0358 (2)
C10.4699 (3)0.2487 (3)0.16092 (14)0.0218 (5)
H10.5290.18580.2040.026*
C20.3743 (3)0.3692 (3)0.20534 (17)0.0322 (6)
H2A0.31780.43470.16450.048*
H2B0.45120.42880.24040.048*
H2C0.29250.32170.23970.048*
C30.3525 (4)0.1470 (3)0.11119 (18)0.0352 (7)
H3A0.26410.11320.14620.053*
H3B0.41340.05990.09160.053*
H3C0.30430.20230.06370.053*
C40.7288 (3)0.1727 (3)0.04740 (15)0.0222 (5)
H40.6390.12210.01340.027*
C50.7990 (4)0.0510 (3)0.10597 (17)0.0336 (6)
H5A0.8222−0.03960.07420.05*
H5B0.71820.02770.14740.05*
H5C0.90150.08710.13370.05*
C60.8569 (4)0.2198 (3)−0.01420 (17)0.0355 (7)
H6A0.95910.25050.01590.053*
H6B0.81360.304−0.04750.053*
H6C0.88020.1352−0.05050.053*
C70.7729 (3)0.4281 (3)0.17166 (15)0.0248 (5)
H70.70880.5120.19590.03*
C80.8372 (4)0.3339 (3)0.24483 (18)0.0393 (7)
H8A0.91220.25660.22540.059*
H8B0.74390.28610.27110.059*
H8C0.89680.39850.2850.059*
C90.9156 (5)0.5020 (3)0.1284 (2)0.0403 (9)
H9A0.97270.57250.16630.06*
H9B0.87230.55620.07940.06*
H9C0.99360.42490.11160.06*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.0209 (2)0.0166 (2)0.01496 (18)−0.00014 (9)−0.00173 (12)−0.00049 (8)
P10.0189 (3)0.0187 (3)0.0156 (3)0.0011 (2)−0.0004 (2)0.0009 (2)
Cl10.0575 (5)0.0223 (3)0.0259 (3)0.0064 (3)−0.0155 (3)−0.0074 (3)
C10.0226 (12)0.0224 (11)0.0205 (12)0.0007 (10)0.0030 (10)0.0034 (10)
C20.0311 (14)0.0334 (14)0.0329 (14)0.0026 (13)0.0120 (12)−0.0013 (12)
C30.0326 (15)0.0392 (16)0.0344 (15)−0.0152 (13)0.0068 (12)−0.0051 (12)
C40.0226 (12)0.0216 (12)0.0225 (12)0.0035 (10)0.0023 (10)−0.0014 (10)
C50.0391 (17)0.0292 (14)0.0329 (15)0.0120 (14)0.0053 (13)0.0000 (13)
C60.0354 (16)0.0381 (16)0.0341 (15)0.0051 (13)0.0129 (13)0.0002 (12)
C70.0252 (13)0.0262 (13)0.0225 (12)−0.0011 (11)−0.0049 (10)−0.0019 (10)
C80.0494 (18)0.0365 (15)0.0301 (15)0.0017 (14)−0.0196 (13)−0.0004 (12)
C90.0307 (19)0.052 (2)0.0378 (19)−0.0199 (12)−0.0029 (16)−0.0036 (12)

Geometric parameters (Å, °)

Pd1—Cl1i2.3030 (6)C4—C51.533 (4)
Pd1—Cl12.3030 (6)C4—H41
Pd1—P12.3603 (6)C5—H5A0.98
Pd1—P1i2.3603 (6)C5—H5B0.98
P1—C11.845 (2)C5—H5C0.98
P1—C41.849 (2)C6—H6A0.98
P1—C71.856 (2)C6—H6B0.98
C1—C31.518 (4)C6—H6C0.98
C1—C21.523 (3)C7—C81.525 (4)
C1—H11C7—C91.528 (4)
C2—H2A0.98C7—H71
C2—H2B0.98C8—H8A0.98
C2—H2C0.98C8—H8B0.98
C3—H3A0.98C8—H8C0.98
C3—H3B0.98C9—H9A0.98
C3—H3C0.98C9—H9B0.98
C4—C61.529 (3)C9—H9C0.98
Cl1i—Pd1—Cl1180.00 (3)C6—C4—H4105.2
Cl1i—Pd1—P189.82 (2)C5—C4—H4105.2
Cl1—Pd1—P190.18 (2)P1—C4—H4105.2
Cl1i—Pd1—P1i90.18 (2)C4—C5—H5A109.5
Cl1—Pd1—P1i89.82 (2)C4—C5—H5B109.5
P1—Pd1—P1i180H5A—C5—H5B109.5
C1—P1—C4104.84 (11)C4—C5—H5C109.5
C1—P1—C7104.47 (11)H5A—C5—H5C109.5
C4—P1—C7110.77 (12)H5B—C5—H5C109.5
C1—P1—Pd1109.81 (8)C4—C6—H6A109.5
C4—P1—Pd1113.07 (8)C4—C6—H6B109.5
C7—P1—Pd1113.18 (8)H6A—C6—H6B109.5
C3—C1—C2110.7 (2)C4—C6—H6C109.5
C3—C1—P1112.16 (17)H6A—C6—H6C109.5
C2—C1—P1110.86 (17)H6B—C6—H6C109.5
C3—C1—H1107.6C8—C7—C9110.8 (2)
C2—C1—H1107.6C8—C7—P1116.30 (18)
P1—C1—H1107.6C9—C7—P1111.43 (19)
C1—C2—H2A109.5C8—C7—H7105.8
C1—C2—H2B109.5C9—C7—H7105.8
H2A—C2—H2B109.5P1—C7—H7105.8
C1—C2—H2C109.5C7—C8—H8A109.5
H2A—C2—H2C109.5C7—C8—H8B109.5
H2B—C2—H2C109.5H8A—C8—H8B109.5
C1—C3—H3A109.5C7—C8—H8C109.5
C1—C3—H3B109.5H8A—C8—H8C109.5
H3A—C3—H3B109.5H8B—C8—H8C109.5
C1—C3—H3C109.5C7—C9—H9A109.5
H3A—C3—H3C109.5C7—C9—H9B109.5
H3B—C3—H3C109.5H9A—C9—H9B109.5
C6—C4—C5110.8 (2)C7—C9—H9C109.5
C6—C4—P1113.17 (18)H9A—C9—H9C109.5
C5—C4—P1116.20 (17)H9B—C9—H9C109.5

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2618).

References

  • Baum, E., Matern, E., Robaszkiewicz, A. & Pikies, J. (2006). Z. Anorg. Allg. Chem.632, 1073–1077.
  • Bedford, R. B., Haselwood, S. L., Limmert, M. E., Brown, J. M., Ramdeehul, S., Cowley, A. R., Coles, S. J. & Hursthouse, M. B. (2003). Organometallics, 22, 1364–1371.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.
  • Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Schultz, G., Subbotina, N. Y., Jensen, C. M., Golen, J. A. & Hargittai, J. (1992). Inorg. Chim. Acta, 191, 85–90.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705–m1707.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography