PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1327.
Published online 2008 June 21. doi:  10.1107/S1600536808016711
PMCID: PMC2961639

(Z)-3-Anilino-1,3-diphenylprop-2-en-1-one

Abstract

In the title compound, C21H17NO, the phenyl ring directly linked to the carbonyl group is oriented at an angle of 7.3 (2)° with respect to the aniline ring, and at an angle of 55.6 (2)° with respect to the other phenyl ring. There is an intra­molecular hydrogen bond involving the NH group and the carbonyl O atom. The crystal structure is stabilized by weak C—H(...)π inter­actions, which link the mol­ecules into a herringbone arrangement.

Related literature

For related literature see: Dondoni & Perrone (1993 [triangle]); Ferraz et al. (1995 [triangle]); Michael et al. (2001 [triangle]); Azzaro et al. (1981 [triangle]); Alberola et al. (1999 [triangle]); Chaaban et al. (1979 [triangle]); Augusti & Kascheres (1993 [triangle]); Bejan et al. (1998 [triangle]); Eberlin & Kascheres (1988 [triangle]); Greenhill (1977 [triangle]); Michael et al. (1999 [triangle]); Elassar & El-Khair (2003 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1327-scheme1.jpg

Experimental

Crystal data

  • C21H17NO
  • M r = 299.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1327-efi1.jpg
  • a = 15.880 (7) Å
  • b = 6.034 (3) Å
  • c = 18.401 (8) Å
  • β = 114.433 (7)°
  • V = 1605.4 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 (2) K
  • 0.24 × 0.20 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.96, T max = 0.98
  • 7511 measured reflections
  • 2774 independent reflections
  • 1580 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079
  • wR(F 2) = 0.249
  • S = 1.04
  • 2774 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016711/su2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016711/su2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Jiangnan University.

supplementary crystallographic information

Comment

β-enamino ketones are a highly versatile class of intermediates for the synthesis of natural therapeutic and biologically active analogues (Dondoni & Perrone, 1993; Ferraz et al., 1995; Michael et al., 2001; Azzaro et al., 1981). Pyrroles, oxazoles, pyridinones, quinolines, dibenzodiazepines have also been prepared from enaminones (Alberola et al., 1999; Chaaban et al., 1979; Augusti & Kascheres, 1993; Bejan et al., 1998; Eberlin & Kascheres, 1988). It is therefore not surprising that many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Michael et al., 1999; Elassar & El-Khair, 2003). During our development of new environmentally friendly methodologies for the preparation of β-enamino ketones (Zhang et al., 2006), we synthesized the title compound, (I), the structure of which is reported here.

The molecular structure of compound (I) is illustrated in Fig. 1. The geometry of the enamine double bond is Z, with hydrogen bonding of the enamine N—H to the carbonyl oxygen atom (Table 1). Phenyl ring A (C1-C6) forms dihedral angles of 7.3 (2)° and 55.6 (2)° with the aniline ring C (C16-C21) and the phenyl ring B (C10-C15), respectively. As in other β-enamino ketones compound (I) displays electron delocalization, as shown by the comparison of the N1—C9 [1.347 (6)°] and N1—C16 [1.417 (6) Å] bond lengths.

The crystal structure of compound (I) is stabilized by weak C—H···π interactions, which link the molecules into a herringbone chain (Fig. 2). The distance of the H atom to the centroid of the benzene ring is 2.834 (10) Å.

Experimental

A mixture of the 1,3-diphenylpropane-1,3-dione (5 mmol), aniline (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 6 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc(210 ml). The combined organic layers were dried, concentrated, and then purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (1: 8), giving a yellow-orange solid (yield 68%). Mp 96–97°C; IR (neat, cm-1): ν 3053, 1592, 1568, 1475, 1441, 1323, 1212, 1079, 1053, 1022, 904, 841, 697 1H NMR (CDCl3, 300 MHz): δ 6.09 (s, 1H), 6.78 (d, 2H), 6.96–7.00 (m, 1H), 7.09–7.14 (m, 2H), 7.26–7.50 (m, 8H), 7.96 (d, 2H), 12.90 (br s, 1H, NH). 13C NMR (CDCl3, 75 MHz): δ 97.0, 123.1, 124.2, 127.2, 128.2, 128.5, 128.7, 129.6, 131.3, 135.8, 139.4, 139.8, 161.4, 189.6. ESI-MS: 300 (M+1)+ Elemental Anal. Calcd. for C21H17NO: C, 84.25; H, 5.72; N, 4.68. Found: C, 84.48; H, 5.82; N, 4.45. Single crystals of (I), suitable for X-ray diffraction analysis, were obtained from ethyl acetate-cyclohexane by slow evaporation at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 - 0.97 Å, and Uiso(H) = 1.5Ueq(CH3) or 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of compound (I), showing the atomic numbering scheme and the displacement ellipsoids drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line.
Fig. 2.
The molecular packing of compound (I), showing the C—H···π interactions (dashed lines).

Crystal data

C21H17NOF000 = 632
Mr = 299.36Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1702 reflections
a = 15.880 (7) Åθ = 2.3–23.8º
b = 6.034 (3) ŵ = 0.08 mm1
c = 18.401 (8) ÅT = 294 (2) K
β = 114.433 (7)ºBlock, yellow
V = 1605.4 (13) Å30.24 × 0.20 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2774 independent reflections
Radiation source: fine-focus sealed tube1580 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.052
T = 294(2) Kθmax = 25.0º
phi and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −17→18
Tmin = 0.96, Tmax = 0.98k = −7→7
7511 measured reflectionsl = −17→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.079  w = 1/[σ2(Fo2) + (0.1119P)2 + 1.614P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.249(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
2774 reflectionsΔρmin = −0.23 e Å3
209 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2315 (2)0.0638 (5)0.19524 (16)0.0578 (9)
N10.3124 (2)−0.1522 (6)0.11657 (19)0.0490 (9)
H10.3021−0.13320.15850.059*
C10.1066 (3)0.5369 (7)0.0895 (2)0.0511 (11)
H1A0.13890.56460.05820.061*
C20.0442 (3)0.6921 (8)0.0932 (3)0.0616 (13)
H20.03580.82490.06540.074*
C3−0.0053 (3)0.6511 (10)0.1376 (3)0.0723 (16)
H3−0.04740.75530.13960.087*
C40.0075 (4)0.4553 (11)0.1792 (3)0.0750 (16)
H4−0.02670.42620.20870.090*
C50.0711 (3)0.3018 (9)0.1771 (3)0.0586 (13)
H50.08040.17090.20610.070*
C60.1212 (3)0.3424 (7)0.1318 (2)0.0430 (10)
C70.1904 (3)0.1718 (7)0.1323 (2)0.0451 (10)
C80.2038 (3)0.1350 (7)0.0618 (2)0.0435 (10)
H80.17090.22330.01770.052*
C90.2619 (3)−0.0218 (7)0.0543 (2)0.0421 (10)
C100.2628 (3)−0.0622 (7)−0.0250 (2)0.0418 (10)
C110.2382 (3)−0.2677 (8)−0.0616 (2)0.0521 (12)
H110.2253−0.3840−0.03460.063*
C120.2325 (3)−0.3011 (8)−0.1375 (2)0.0585 (13)
H120.2151−0.4388−0.16190.070*
C130.2526 (3)−0.1323 (9)−0.1769 (3)0.0611 (13)
H130.2491−0.1554−0.22810.073*
C140.2776 (4)0.0702 (9)−0.1418 (3)0.0690 (15)
H140.29130.1846−0.16900.083*
C150.2828 (3)0.1064 (8)−0.0654 (3)0.0587 (13)
H150.29970.2450−0.04180.070*
C160.3797 (3)−0.3154 (7)0.1242 (2)0.0458 (11)
C170.3834 (3)−0.5000 (7)0.1687 (2)0.0536 (12)
H170.3408−0.51660.19100.064*
C180.4486 (4)−0.6602 (8)0.1808 (3)0.0679 (15)
H180.4510−0.78340.21200.082*
C190.5104 (4)−0.6391 (10)0.1473 (3)0.0804 (17)
H190.5539−0.74970.15440.096*
C200.5083 (3)−0.4551 (12)0.1031 (3)0.0783 (17)
H200.5509−0.44090.08070.094*
C210.4432 (3)−0.2894 (9)0.0914 (3)0.0647 (13)
H210.4424−0.16330.06200.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.077 (2)0.063 (2)0.0374 (15)0.0107 (17)0.0279 (15)0.0051 (15)
N10.062 (2)0.054 (2)0.0368 (17)0.0121 (18)0.0251 (17)0.0093 (16)
C10.056 (3)0.053 (3)0.047 (2)−0.005 (2)0.023 (2)−0.006 (2)
C20.067 (3)0.053 (3)0.056 (3)0.005 (2)0.016 (2)−0.007 (2)
C30.058 (3)0.091 (4)0.064 (3)0.012 (3)0.021 (3)−0.023 (3)
C40.069 (3)0.104 (5)0.065 (3)0.013 (3)0.041 (3)−0.002 (3)
C50.068 (3)0.066 (3)0.048 (2)0.004 (3)0.031 (2)0.000 (2)
C60.051 (2)0.046 (2)0.0301 (19)−0.0043 (19)0.0157 (18)−0.0060 (17)
C70.051 (2)0.047 (3)0.040 (2)−0.005 (2)0.0211 (19)−0.0032 (19)
C80.054 (2)0.047 (2)0.0299 (19)0.002 (2)0.0177 (18)0.0031 (18)
C90.050 (2)0.044 (2)0.0333 (19)−0.001 (2)0.0178 (18)0.0006 (18)
C100.047 (2)0.045 (2)0.0315 (19)0.0042 (19)0.0152 (18)0.0012 (17)
C110.070 (3)0.050 (3)0.041 (2)−0.006 (2)0.028 (2)−0.004 (2)
C120.071 (3)0.061 (3)0.044 (2)−0.004 (2)0.024 (2)−0.015 (2)
C130.078 (3)0.073 (4)0.038 (2)0.012 (3)0.029 (2)0.003 (2)
C140.104 (4)0.067 (4)0.051 (3)0.009 (3)0.046 (3)0.017 (3)
C150.094 (4)0.046 (3)0.047 (2)0.000 (2)0.040 (3)0.004 (2)
C160.048 (2)0.051 (3)0.033 (2)0.002 (2)0.0113 (18)−0.0049 (18)
C170.055 (3)0.049 (3)0.045 (2)−0.004 (2)0.008 (2)−0.003 (2)
C180.068 (3)0.042 (3)0.068 (3)0.004 (3)0.002 (3)0.002 (2)
C190.068 (4)0.076 (4)0.078 (4)0.024 (3)0.011 (3)−0.012 (3)
C200.057 (3)0.114 (5)0.064 (3)0.016 (3)0.025 (3)−0.003 (3)
C210.056 (3)0.084 (4)0.056 (3)0.007 (3)0.024 (2)0.006 (3)

Geometric parameters (Å, °)

O1—C71.252 (5)C10—C111.388 (6)
N1—C91.347 (5)C11—C121.377 (6)
N1—C161.416 (5)C11—H110.9300
N1—H10.8600C12—C131.362 (6)
C1—C61.373 (6)C12—H120.9300
C1—C21.386 (6)C13—C141.362 (7)
C1—H1A0.9300C13—H130.9300
C2—C31.369 (7)C14—C151.391 (6)
C2—H20.9300C14—H140.9300
C3—C41.377 (8)C15—H150.9300
C3—H30.9300C16—C171.369 (6)
C4—C51.382 (7)C16—C211.384 (6)
C4—H40.9300C17—C181.366 (7)
C5—C61.393 (6)C17—H170.9300
C5—H50.9300C18—C191.363 (8)
C6—C71.502 (6)C18—H180.9300
C7—C81.416 (5)C19—C201.369 (8)
C8—C91.368 (6)C19—H190.9300
C8—H80.9300C20—C211.389 (7)
C9—C101.486 (5)C20—H200.9300
C10—C151.372 (6)C21—H210.9300
C9—N1—C16130.5 (3)C12—C11—C10120.6 (4)
C9—N1—H1114.7C12—C11—H11119.7
C16—N1—H1114.7C10—C11—H11119.7
C6—C1—C2120.4 (4)C13—C12—C11119.9 (4)
C6—C1—H1A119.8C13—C12—H12120.0
C2—C1—H1A119.8C11—C12—H12120.0
C3—C2—C1120.4 (5)C12—C13—C14120.3 (4)
C3—C2—H2119.8C12—C13—H13119.8
C1—C2—H2119.8C14—C13—H13119.8
C2—C3—C4119.8 (5)C13—C14—C15120.2 (4)
C2—C3—H3120.1C13—C14—H14119.9
C4—C3—H3120.1C15—C14—H14119.9
C3—C4—C5120.1 (5)C10—C15—C14120.1 (4)
C3—C4—H4120.0C10—C15—H15120.0
C5—C4—H4120.0C14—C15—H15120.0
C4—C5—C6120.3 (5)C17—C16—C21119.7 (4)
C4—C5—H5119.9C17—C16—N1118.0 (4)
C6—C5—H5119.9C21—C16—N1122.3 (4)
C1—C6—C5119.0 (4)C18—C17—C16121.1 (5)
C1—C6—C7122.8 (4)C18—C17—H17119.5
C5—C6—C7118.3 (4)C16—C17—H17119.5
O1—C7—C8123.2 (4)C19—C18—C17119.9 (5)
O1—C7—C6117.5 (3)C19—C18—H18120.0
C8—C7—C6119.3 (4)C17—C18—H18120.0
C9—C8—C7124.4 (4)C18—C19—C20120.0 (5)
C9—C8—H8117.8C18—C19—H19120.0
C7—C8—H8117.8C20—C19—H19120.0
N1—C9—C8120.4 (3)C19—C20—C21120.6 (5)
N1—C9—C10119.7 (4)C19—C20—H20119.7
C8—C9—C10119.6 (3)C21—C20—H20119.7
C15—C10—C11118.8 (4)C16—C21—C20118.7 (5)
C15—C10—C9120.6 (4)C16—C21—H21120.6
C11—C10—C9120.5 (4)C20—C21—H21120.6
C6—C1—C2—C3−1.5 (7)N1—C9—C10—C1156.6 (6)
C1—C2—C3—C40.4 (7)C8—C9—C10—C11−117.8 (5)
C2—C3—C4—C50.9 (8)C15—C10—C11—C12−0.9 (7)
C3—C4—C5—C6−1.2 (7)C9—C10—C11—C12175.3 (4)
C2—C1—C6—C51.2 (6)C10—C11—C12—C131.0 (7)
C2—C1—C6—C7−177.8 (4)C11—C12—C13—C14−0.4 (8)
C4—C5—C6—C10.2 (6)C12—C13—C14—C15−0.1 (8)
C4—C5—C6—C7179.2 (4)C11—C10—C15—C140.3 (7)
C1—C6—C7—O1146.2 (4)C9—C10—C15—C14−175.9 (4)
C5—C6—C7—O1−32.8 (6)C13—C14—C15—C100.2 (8)
C1—C6—C7—C8−35.9 (6)C9—N1—C16—C17−143.8 (4)
C5—C6—C7—C8145.0 (4)C9—N1—C16—C2138.9 (7)
O1—C7—C8—C90.5 (7)C21—C16—C17—C18−0.4 (6)
C6—C7—C8—C9−177.2 (4)N1—C16—C17—C18−177.7 (4)
C16—N1—C9—C8−176.4 (4)C16—C17—C18—C19−1.1 (7)
C16—N1—C9—C109.3 (7)C17—C18—C19—C201.6 (8)
C7—C8—C9—N1−1.0 (6)C18—C19—C20—C21−0.5 (8)
C7—C8—C9—C10173.4 (4)C17—C16—C21—C201.4 (7)
N1—C9—C10—C15−127.2 (5)N1—C16—C21—C20178.6 (4)
C8—C9—C10—C1558.4 (6)C19—C20—C21—C16−0.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.942.643 (5)138
C18—H18···Cgi0.932.843.627 (1)142

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2060).

References

  • Alberola, A., Calvo, L. A., Ortega, A. G., Ruiz, M. C. S. & Yustos, P. (1999). J. Org. Chem.64 , 9493–9498.
  • Augusti, R. & Kascheres, C. (1993). J. Org. Chem.58, 7079–7083.
  • Azzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880–881.
  • Bejan, E., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (1998). Eur. J. Org. Chem. pp. 2907–2912.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chaaban, I., Greenhill, J. V. & Akhtar, P. (1979). J. Chem. Soc. Perkin Trans 1, pp. 1593–1596.
  • Dondoni, A. & Perrone, D. (1993). Synthesis, pp. 1162–1176.
  • Eberlin, M. N. & Kascheres, C. (1988). J. Org. Chem. 53, 2084–2086.
  • Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.
  • Ferraz, H. M. C., Oliveira, E. O., Payret-Arrua, M. E. & Brandt, C. A. (1995). J. Org. Chem.60, 7357–7359.
  • Greenhill, J. V. (1977). Chem. Soc. Rev.6, 277–294.
  • Michael, J. P., De Koning, C. B., Gravestock, D., Hosken, G. D. & Howard, A. S. (1999). Pure Appl. Chem, 71, 979–988.
  • Michael, J. P., De Koning, C. B. & Hosken, G. D. (2001). Tetrahedron, 57, 9635–9648.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal.348, 184–190.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography