PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1320.
Published online 2008 June 21. doi:  10.1107/S1600536808018424
PMCID: PMC2961637

Diethyl [hydr­oxy(phen­yl)meth­yl]phospho­nate

Abstract

Mol­ecules of the title compound, C11H17O4P, are linked into chiral helical chains along the crystallographic b axis via O—H(...)O hydrogen bonds between the hydr­oxy group and an O atom of the phospho­nate group. One ethyl group is disordered over two positions; the site occupancy factors are ca 0.7 and 0.3.

Related literature

For related literature, see: Fang et al. (2006a [triangle],b [triangle],c [triangle], 2007 [triangle]); Kaboudin (2000 [triangle]); Maier & Diel (1994 [triangle]); Stowasser et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1320-scheme1.jpg

Experimental

Crystal data

  • C11H17O4P
  • M r = 244.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1320-efi1.jpg
  • a = 9.2361 (6) Å
  • b = 8.0719 (5) Å
  • c = 17.4599 (13) Å
  • β = 95.096 (5)°
  • V = 1296.54 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 296 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.940, T max = 0.959
  • 10679 measured reflections
  • 2345 independent reflections
  • 1723 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.174
  • S = 1.07
  • 2345 reflections
  • 168 parameters
  • 48 restraints
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018424/rk2099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018424/rk2099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Program for Excellent Talents in Huaiyin Teachers College (ETHYTC, 07QNZC010) and the Natural Science Foundation of the Education Committee of Guangxi Province.

supplementary crystallographic information

Comment

The α–hydroxyphosphonic esters and their derivatives have attracted considerable interest owing to their interesting biological activities, such as inhibition of inositol monophosphatase (Maier & Diel, 1994) and HIV protease (Stowasser et al., 1992). These compounds are generally synthesized from aldehydes and phosphites via the base–catalyzed Pudovik reaction, as exemplified by diisopropyl (hydroxyphenylmethyl)phosphonate (Fang, et al., 2006a), dimethyl [hydroxy(phenyl)methyl]phosphonate (Fang, et al., 2006b), diphenyl (hydroxyphenylmethyl)phosphonate (Fang, et al., 2006c) and diethyl hydroxy(4–methoxyphenyl)methylphosphonate (Fang, et al., 2007). As an extension of these studies, we report herein on the structure of C11H17O4P, (I), (Fig. 1).

In I, the C10 and C11 atoms are disordered over two sets of sites with occupancies of 0.727 (7) and 0.273 (7). All bond distances and bond angles of I are normal and call for no further comment.

There exist a strong intermolecular H-bonding between O1—H1···O2i (symmetry code: (i) 1/2-x, 1/2+y, 1/2-z) in I. Molecules of I are linked into chiral helical chains by this H–bonding, running parallel to the b axis (Fig. 2). But these chains are aligned in an antiparallel fashion to form inversion centers in the crystal, thus the whole structure is achiral (Fig.3).

Experimental

All chemicals were obtained from commercial sources and used directly without further purification. Magnesium oxide (2 g) was added to a stirred mixture of diethyl phosphite (0.02 mol) and aldehyde (0.02 mol) at room temperature. After 2 h the mixture was washed by dichloromethane (50 ml) and dried with CaCl2; evaporation of the solvent gave the crude product. The products were crystallized from n–hexane (Kaboudin, 2000).

Refinement

All H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H distances of 0.93–0.97Å (0.82Å for O—H group) and Uiso(H) values constrained to be 1.2 (1.5 for –OH and –CH3 group) times Ueq of the carrier atom.

Figures

Fig. 1.
A molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. Only major part of disoprdered moiety are presented. The H atoms are drawn as a small spheres of arbitrary radius.
Fig. 2.
The chiral helical chain constructed by O—H···O H–bonds.
Fig. 3.
Part of the crystal structure of I, showing chiral helical chains aligned in an antiparallel fashion. The H atoms not involved in H–bonds are omitted for clarity.

Crystal data

C11H17O4PZ = 4
Mr = 244.22F000 = 520
Monoclinic, P21/nDx = 1.251 Mg m3
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 9.2361 (6) Åθ = 2.3–25.2º
b = 8.0719 (5) ŵ = 0.21 mm1
c = 17.4599 (13) ÅT = 296 (2) K
β = 95.096 (5)ºPrism, colourless
V = 1296.54 (15) Å30.30 × 0.30 × 0.20 mm

Data collection

Rigaku Mercury diffractometer2345 independent reflections
Radiation source: Fine–focus sealed tube1723 reflections with I > 2σ(I)
Monochromator: GraphiteRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.2º
T = 296(2) Kθmin = 2.3º
ω scansh = −11→11
Absorption correction: multi-scan(Jacobson, 1998)k = −9→8
Tmin = 0.940, Tmax = 0.959l = −17→20
10679 measured reflections

Refinement

Refinement on F2Secondary atom site location: Difmap
Least-squares matrix: FullHydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.174  w = 1/[σ2(Fo2) + (0.1001P)2 + 0.236P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2345 reflectionsΔρmax = 0.38 e Å3
168 parametersΔρmin = −0.34 e Å3
48 restraintsExtinction correction: none
Primary atom site location: Direct

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.0039 (3)0.8100 (3)0.27207 (16)0.0699 (7)
C2−0.1128 (4)0.9141 (5)0.2543 (2)0.0945 (10)
H2−0.10800.99160.21520.113*
C3−0.2344 (5)0.9061 (6)0.2925 (3)0.1194 (14)
H3−0.31150.97730.27890.143*
C4−0.2447 (5)0.7966 (7)0.3498 (3)0.1225 (15)
H4−0.32780.79270.37610.147*
C5−0.1305 (5)0.6901 (6)0.3689 (2)0.1170 (14)
H5−0.13700.61380.40840.140*
C6−0.0049 (4)0.6957 (4)0.3296 (2)0.0888 (10)
H60.07160.62290.34230.107*
C70.1365 (3)0.8216 (3)0.22835 (17)0.0700 (7)
H70.15170.93760.21460.084*
C8−0.0806 (5)0.7118 (5)0.0237 (2)0.1202 (15)
H8A−0.00720.6701−0.00780.144*
H8B−0.14030.61910.03700.144*
C9−0.1684 (5)0.8298 (5)−0.0188 (2)0.1294 (16)
H9A−0.24270.86890.01180.194*
H9B−0.21280.7791−0.06480.194*
H9C−0.10930.9213−0.03220.194*
C100.3970 (12)0.693 (3)0.1245 (10)0.128 (2)0.273 (7)
H10A0.39220.60730.16300.153*0.273 (7)
H10B0.45120.78640.14770.153*0.273 (7)
C110.4683 (18)0.629 (2)0.0560 (10)0.131 (2)0.273 (7)
H11A0.47530.71680.01940.197*0.273 (7)
H11B0.41100.54040.03250.197*0.273 (7)
H11C0.56380.58890.07250.197*0.273 (7)
C10'0.3723 (5)0.6344 (7)0.0883 (5)0.122 (2)0.727 (7)
H10C0.36210.57700.03940.147*0.727 (7)
H10D0.37770.55290.12930.147*0.727 (7)
C11'0.5025 (6)0.7386 (9)0.0942 (5)0.136 (2)0.727 (7)
H11D0.49760.81490.05180.204*0.727 (7)
H11E0.58720.67000.09280.204*0.727 (7)
H11F0.50810.79920.14160.204*0.727 (7)
O10.2648 (2)0.7606 (3)0.26977 (14)0.0876 (7)
H10.31010.83800.29080.131*
O20.1031 (2)0.5201 (2)0.15362 (11)0.0787 (6)
O3−0.0104 (2)0.7844 (3)0.09335 (11)0.0889 (7)
O40.2499 (3)0.7456 (3)0.09497 (16)0.1077 (8)
P10.11894 (8)0.69802 (9)0.14126 (4)0.0710 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0760 (17)0.0661 (16)0.0641 (15)0.0012 (13)−0.0139 (13)−0.0117 (12)
C20.097 (2)0.101 (2)0.084 (2)0.0294 (19)0.0000 (18)−0.0047 (17)
C30.100 (3)0.146 (4)0.111 (3)0.030 (3)0.002 (2)−0.027 (3)
C40.107 (3)0.144 (4)0.119 (3)−0.012 (3)0.027 (3)−0.048 (3)
C50.143 (4)0.119 (3)0.091 (3)−0.029 (3)0.022 (3)−0.005 (2)
C60.102 (2)0.080 (2)0.082 (2)−0.0091 (17)−0.0077 (19)0.0029 (16)
C70.0726 (16)0.0543 (14)0.0788 (17)0.0010 (12)−0.0172 (14)0.0031 (12)
C80.125 (3)0.118 (3)0.108 (3)0.018 (2)−0.044 (3)−0.014 (2)
C90.148 (4)0.129 (3)0.100 (3)0.009 (3)−0.050 (3)−0.001 (2)
C100.093 (3)0.113 (5)0.179 (6)0.013 (4)0.031 (4)0.015 (4)
C110.098 (4)0.117 (5)0.181 (6)0.016 (4)0.031 (4)0.012 (4)
C10'0.091 (3)0.107 (4)0.173 (6)0.014 (2)0.038 (3)0.016 (3)
C11'0.101 (3)0.121 (4)0.188 (6)0.007 (3)0.023 (3)0.012 (4)
O10.0732 (12)0.0743 (12)0.1085 (16)0.0046 (10)−0.0301 (12)−0.0079 (12)
O20.0826 (13)0.0656 (12)0.0845 (13)0.0092 (9)−0.0106 (10)−0.0046 (9)
O30.1065 (16)0.0916 (15)0.0645 (11)0.0306 (11)−0.0157 (11)−0.0027 (9)
O40.1062 (16)0.0990 (16)0.1221 (19)0.0288 (14)0.0325 (15)0.0324 (15)
P10.0741 (5)0.0677 (5)0.0694 (5)0.0125 (3)−0.0035 (4)0.0054 (3)

Geometric parameters (Å, °)

C1—C61.371 (4)C9—H9B0.9600
C1—C21.380 (4)C9—H9C0.9600
C1—C71.503 (4)C10—O41.471 (8)
C2—C31.358 (5)C10—C111.509 (10)
C2—H20.9300C10—H10A0.9700
C3—C41.344 (7)C10—H10B0.9700
C3—H30.9300C11—H11A0.9600
C4—C51.378 (7)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.401 (5)C10'—O41.456 (5)
C5—H50.9300C10'—C11'1.464 (7)
C6—H60.9300C10'—H10C0.9700
C7—O11.420 (3)C10'—H10D0.9700
C7—P11.814 (3)C11'—H11D0.9600
C7—H70.9800C11'—H11E0.9600
C8—C91.418 (5)C11'—H11F0.9600
C8—O31.450 (4)O1—H10.82
C8—H8A0.9700O2—P11.462 (2)
C8—H8B0.9700O3—P11.561 (2)
C9—H9A0.9600O4—P11.562 (3)
C6—C1—C2118.6 (3)H9A—C9—H9B109.5
C6—C1—C7121.2 (3)C8—C9—H9C109.5
C2—C1—C7120.2 (3)H9A—C9—H9C109.5
C3—C2—C1121.6 (4)H9B—C9—H9C109.5
C3—C2—H2119.2O4—C10—C11105.9 (11)
C1—C2—H2119.2O4—C10—H10A110.5
C4—C3—C2120.9 (4)C11—C10—H10A110.5
C4—C3—H3119.6O4—C10—H10B110.5
C2—C3—H3119.6C11—C10—H10B110.5
C3—C4—C5119.1 (4)H10A—C10—H10B108.7
C3—C4—H4120.4O4—C10'—C11'106.2 (5)
C5—C4—H4120.4O4—C10'—H10C110.5
C4—C5—C6120.7 (4)C11'—C10'—H10C110.5
C4—C5—H5119.6O4—C10'—H10D110.5
C6—C5—H5119.6C11'—C10'—H10D110.5
C1—C6—C5119.1 (4)H10C—C10'—H10D108.7
C1—C6—H6120.5C10'—C11'—H11D109.5
C5—C6—H6120.5C10'—C11'—H11E109.5
O1—C7—C1113.6 (2)H11D—C11'—H11E109.5
O1—C7—P1104.17 (19)C10'—C11'—H11F109.5
C1—C7—P1112.03 (18)H11D—C11'—H11F109.5
O1—C7—H7109.0H11E—C11'—H11F109.5
C1—C7—H7109.0C7—O1—H1109.5
P1—C7—H7109.0C8—O3—P1122.2 (2)
C9—C8—O3111.1 (3)C10'—O4—P1122.1 (3)
C9—C8—H8A109.4C10—O4—P1118.8 (8)
O3—C8—H8A109.4O2—P1—O3115.86 (12)
C9—C8—H8B109.4O2—P1—O4114.24 (13)
O3—C8—H8B109.4O3—P1—O4101.79 (14)
H8A—C8—H8B108.0O2—P1—C7114.79 (12)
C8—C9—H9A109.5O3—P1—C7102.18 (12)
C8—C9—H9B109.5O4—P1—C7106.42 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.716 (3)174

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2099).

References

  • Fang, H., Fang, M.-J., Luo, S.-N., Huang, R.-B. & Zhao, Y.-F. (2006a). Acta Cryst. E62, o637–o638.
  • Fang, M.-J., Fang, H., Zeng, Z.-P., Luo, S.-N. & Zhao, Y.-F. (2006c). Acta Cryst. E62, o1998–o1999.
  • Fang, H., Fang, M.-J., Zeng, Z.-P., Wei, Z.-B. & Zhao, Y.-F. (2006b). Acta Cryst. E62, o1378–o1379.
  • Fang, H., Fang, M.-J. & Zhao, Y.-F. (2007). Acta Cryst. E63, o4002.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Kaboudin, B. (2000). Tetrahedron Lett.41, 3169–3171.
  • Maier, L. & Diel, P. J. (1994). Phosphorus Sulfur Silicon, 90, 259–279.
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stowasser, B., Budt, K., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett.33, 6625–6628.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography