PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m781–m782.
Published online 2008 May 7. doi:  10.1107/S1600536808012737
PMCID: PMC2961629

Poly[di-μ-cis-cyclo­hexane-1,4-dicarboxyl­ato-μ-trans-cyclo­hexane-1,4-dicarboxyl­ato-bis­[dipyrido[3,2-a:2′,3′-c]phenazine]trimanganese(II)]

Abstract

In the title compound, [Mn3(C8H10O4)3(C18H10N4)2], one Mn atom and one cyclohexane-1,4-dicarboxylate (chdc) ligand are located on centres of inversion. One of the two independent Mn atoms is seven-coordinate, binding to five carboxyl­ate O atoms from different chdc ligands and two phenanthrene N atoms from a dipyrido[3,2-a:2′,3′-c]phenazine (L) ligand, while the second Mn atom is six-coordinate, binding to six carboxyl­ate O atoms from different chdc ligands. The cis-chdc ligands bridge the trinuclear MnII clusters, forming chains, which are further linked into a three-dimensional network.

Related literature

For related structures, see: De (2007 [triangle]); Li (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m781-scheme1.jpg

Experimental

Crystal data

  • [Mn3(C8H10O4)3(C18H10N4)2]
  • M r = 1239.90
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m781-efi1.jpg
  • a = 8.5730 (17) Å
  • b = 10.614 (2) Å
  • c = 14.846 (3) Å
  • α = 77.34 (3)°
  • β = 81.99 (3)°
  • γ = 82.67 (3)°
  • V = 1298.6 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 293 (2) K
  • 0.33 × 0.22 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.762, T max = 0.863
  • 12776 measured reflections
  • 5830 independent reflections
  • 3707 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.176
  • S = 1.05
  • 5830 reflections
  • 376 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012737/bt2704sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012737/bt2704Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (No. 1152 G053).

supplementary crystallographic information

Comment

1,4-Cyclohexanedicarboxylic acid (H2chdc), as a flexible multidentate ligand, has been extensively studied in the chemistry of coordination polymers (De, 2007; Li, 2007). Here, we report a new MnII coordination polymer with chdc ligand, namely [Mn3(cis-chdc)3(trans-chdc)(L)2] (I), where L = dipyrido[3,2-a:2',3'-c]-phenazine.

In (I) the Mn1 atom is seven-coordinate binding to five carboxylate O atoms from different chdc ligands, and two phenanthrene N atoms from L ligand (Fig. 1 and Table 1). The Mn2 atom is six-coordinate binding to six carboxylate O atoms from different chdc ligands (Fig. 1 and Table 1). Interestingly, the chdc ligands bridge neighboring MnII atoms to give a trinuclear MnII cluster. The cis-chdc ligands bridge the trinuclear MnII clusters to form a chain structure, which are further linked into a 3D network structure (Fig. 2). One Mn atom and one 1,4-cyclohexanedicarboxylate molecule are located on a centre of inversion.

Experimental

A mixture of Mn(NO3)2.2H2O (1 mmol), H2chdc (1 mmol) and L (1 mmol) was dissolved in 12 ml distilled water, followed by addition of triethylamine until the pH value of the system was approximately 5.5. The resulting solution was sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 175°C for 8 days under autogenous pressure. The reaction vessel was then slowly cooled to room temperature. Pale yellow block-like crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained from the resulting solution.

Refinement

C–bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x-1, y, z; (ii) 2-x, 1-y, -z; (iii) 3-x, 1-y, -z; (iv) 2-x, 2-y, -z.
Fig. 2.
Packing diagram of (I).

Crystal data

[Mn3(C8H10O4)3(C18H10N4)2]Z = 1
Mr = 1239.90F000 = 637
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5730 (17) ÅCell parameters from 8527 reflections
b = 10.614 (2) Åθ = 3.0–27.5º
c = 14.846 (3) ŵ = 0.80 mm1
α = 77.34 (3)ºT = 293 (2) K
β = 81.99 (3)ºBlock, pale yellow
γ = 82.67 (3)º0.33 × 0.22 × 0.19 mm
V = 1298.6 (4) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer5830 independent reflections
Radiation source: rotating anode3707 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.062
Detector resolution: 10.0 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.1º
ω scansh = −11→11
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.762, Tmax = 0.863l = −16→19
12776 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.176  w = 1/[σ2(Fo2) + (0.0908P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5830 reflectionsΔρmax = 0.64 e Å3
376 parametersΔρmin = −0.74 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.3154 (5)0.6357 (5)0.2263 (4)0.0481 (12)
H11.34260.60170.17290.058*
C21.4234 (5)0.7038 (5)0.2518 (4)0.0542 (13)
H21.52160.71370.21690.065*
C31.3834 (5)0.7570 (5)0.3297 (4)0.0513 (13)
H31.45350.80440.34760.062*
C41.2354 (5)0.7384 (4)0.3817 (3)0.0361 (9)
C51.1352 (4)0.6662 (4)0.3517 (3)0.0322 (9)
C60.9812 (5)0.6398 (4)0.4043 (3)0.0312 (8)
C70.7506 (5)0.5439 (4)0.4195 (3)0.0428 (10)
H70.68730.49490.39770.051*
C80.6944 (5)0.5891 (5)0.5002 (3)0.0448 (11)
H80.59570.57020.53140.054*
C90.7855 (5)0.6617 (4)0.5334 (3)0.0405 (10)
H90.75040.69150.58790.049*
C100.9314 (5)0.6901 (4)0.4842 (3)0.0334 (9)
C111.0314 (5)0.7716 (4)0.5137 (3)0.0320 (9)
C121.1837 (5)0.7951 (4)0.4643 (3)0.0361 (9)
C131.2187 (5)0.9248 (4)0.5624 (3)0.0368 (9)
C141.3088 (5)1.0088 (5)0.5907 (4)0.0467 (11)
H141.40851.02500.55970.056*
C151.2492 (5)1.0660 (4)0.6635 (3)0.0455 (11)
H151.30961.12040.68210.055*
C161.0994 (6)1.0448 (4)0.7108 (3)0.0451 (11)
H161.06021.08620.75960.054*
C171.0108 (6)0.9640 (5)0.6856 (3)0.0459 (11)
H170.91160.94920.71780.055*
C181.0681 (5)0.9021 (4)0.6110 (3)0.0372 (9)
C191.2088 (4)0.3188 (4)0.1441 (3)0.0330 (9)
C201.3374 (4)0.2042 (4)0.1547 (3)0.0329 (9)
H201.28880.12770.14960.039*
C211.4043 (5)0.1721 (4)0.2488 (3)0.0371 (9)
H21A1.31730.16780.29830.044*
H21B1.46480.08750.25590.044*
C221.5100 (4)0.2725 (4)0.2577 (3)0.0329 (9)
H22A1.55590.24490.31580.039*
H22B1.44640.35470.25900.039*
C231.6420 (4)0.2913 (4)0.1774 (3)0.0344 (9)
H231.70470.20700.17900.041*
C241.7540 (5)0.3865 (4)0.1871 (3)0.0371 (10)
C251.5739 (5)0.3280 (4)0.0842 (3)0.0389 (10)
H25A1.51120.41150.07970.047*
H25B1.65980.33590.03400.047*
C261.4706 (5)0.2260 (5)0.0744 (3)0.0416 (10)
H26A1.53590.14470.07260.050*
H26B1.42480.25350.01610.050*
C270.9657 (5)0.7352 (4)0.0992 (3)0.0360 (9)
C280.9835 (5)0.8607 (4)0.0286 (3)0.0426 (10)
H281.00180.8391−0.03320.051*
C291.1322 (5)0.9177 (4)0.0430 (3)0.0400 (10)
H29A1.11980.93680.10470.048*
H29B1.22360.85440.03830.048*
C300.8404 (5)0.9579 (4)0.0298 (3)0.0423 (10)
H30A0.81660.97870.09100.051*
H30B0.75010.92060.01720.051*
N11.1746 (4)0.6163 (3)0.2743 (2)0.0364 (8)
N20.8915 (4)0.5678 (3)0.3718 (2)0.0340 (8)
N31.2766 (4)0.8696 (4)0.4881 (3)0.0407 (9)
N40.9733 (4)0.8249 (3)0.5858 (2)0.0380 (8)
O11.1606 (4)0.3541 (3)0.0659 (2)0.0532 (9)
O21.1563 (3)0.3674 (3)0.2134 (2)0.0397 (7)
O31.8227 (4)0.4527 (4)0.1177 (3)0.0595 (10)
O41.7807 (4)0.3935 (3)0.2666 (2)0.0532 (9)
O50.8733 (4)0.7288 (3)0.1720 (2)0.0461 (8)
O61.0573 (3)0.6357 (3)0.0822 (2)0.0365 (7)
Mn10.97563 (7)0.51832 (6)0.22819 (4)0.02964 (19)
Mn21.00000.50000.00000.0292 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.043 (2)0.049 (3)0.057 (3)−0.008 (2)0.005 (2)−0.025 (2)
C20.038 (2)0.069 (3)0.063 (3)−0.019 (2)0.008 (2)−0.031 (3)
C30.039 (2)0.059 (3)0.066 (3)−0.016 (2)0.001 (2)−0.031 (3)
C40.036 (2)0.034 (2)0.040 (2)−0.0096 (17)0.0023 (18)−0.0130 (19)
C50.033 (2)0.031 (2)0.036 (2)−0.0062 (16)−0.0048 (17)−0.0108 (18)
C60.038 (2)0.0253 (19)0.033 (2)−0.0071 (16)−0.0100 (17)−0.0067 (17)
C70.042 (2)0.041 (2)0.050 (3)−0.0163 (19)−0.006 (2)−0.013 (2)
C80.035 (2)0.057 (3)0.047 (3)−0.017 (2)0.007 (2)−0.020 (2)
C90.042 (2)0.044 (3)0.039 (2)−0.0143 (19)0.0044 (19)−0.015 (2)
C100.036 (2)0.029 (2)0.038 (2)−0.0105 (16)−0.0045 (18)−0.0087 (18)
C110.038 (2)0.029 (2)0.033 (2)−0.0069 (16)−0.0070 (17)−0.0105 (17)
C120.036 (2)0.035 (2)0.042 (2)−0.0061 (17)−0.0077 (18)−0.015 (2)
C130.038 (2)0.032 (2)0.044 (3)−0.0054 (17)−0.0104 (19)−0.0127 (19)
C140.037 (2)0.054 (3)0.058 (3)−0.010 (2)−0.005 (2)−0.028 (2)
C150.047 (3)0.042 (3)0.057 (3)−0.008 (2)−0.013 (2)−0.023 (2)
C160.057 (3)0.043 (3)0.042 (3)−0.007 (2)−0.007 (2)−0.020 (2)
C170.052 (3)0.051 (3)0.040 (3)−0.019 (2)0.004 (2)−0.020 (2)
C180.041 (2)0.034 (2)0.040 (2)−0.0120 (18)−0.0062 (19)−0.0084 (19)
C190.033 (2)0.0235 (19)0.044 (2)−0.0064 (16)−0.0099 (18)−0.0058 (18)
C200.031 (2)0.0238 (19)0.047 (2)−0.0073 (15)−0.0061 (18)−0.0107 (18)
C210.036 (2)0.030 (2)0.044 (3)−0.0092 (17)−0.0082 (18)0.0013 (19)
C220.0299 (19)0.037 (2)0.034 (2)−0.0113 (16)−0.0075 (16)−0.0051 (18)
C230.0288 (19)0.030 (2)0.047 (3)−0.0068 (16)−0.0013 (18)−0.0136 (19)
C240.031 (2)0.037 (2)0.047 (3)−0.0098 (17)0.0017 (19)−0.017 (2)
C250.038 (2)0.044 (2)0.037 (2)−0.0093 (18)−0.0001 (18)−0.013 (2)
C260.035 (2)0.052 (3)0.044 (3)−0.0067 (19)−0.0022 (19)−0.022 (2)
C270.047 (2)0.028 (2)0.037 (2)−0.0106 (18)−0.009 (2)−0.0073 (18)
C280.053 (3)0.026 (2)0.048 (3)−0.0078 (18)−0.001 (2)−0.0045 (19)
C290.039 (2)0.031 (2)0.047 (3)−0.0050 (18)−0.003 (2)−0.003 (2)
C300.045 (2)0.032 (2)0.050 (3)−0.0124 (18)−0.005 (2)−0.004 (2)
N10.0386 (18)0.0342 (19)0.039 (2)−0.0080 (15)−0.0005 (15)−0.0128 (16)
N20.0337 (17)0.0320 (18)0.040 (2)−0.0101 (14)−0.0060 (15)−0.0099 (16)
N30.0353 (18)0.045 (2)0.049 (2)−0.0119 (15)−0.0009 (16)−0.0233 (19)
N40.0442 (19)0.041 (2)0.0338 (19)−0.0150 (16)−0.0048 (16)−0.0112 (16)
O10.069 (2)0.0470 (19)0.048 (2)0.0177 (16)−0.0304 (17)−0.0172 (16)
O20.0408 (16)0.0360 (16)0.0435 (18)0.0027 (12)−0.0073 (14)−0.0129 (14)
O30.055 (2)0.063 (2)0.063 (2)−0.0343 (18)0.0056 (17)−0.0086 (19)
O40.0518 (19)0.061 (2)0.059 (2)−0.0265 (16)−0.0042 (16)−0.0263 (18)
O50.0587 (19)0.0331 (16)0.0444 (19)−0.0054 (14)0.0034 (16)−0.0088 (14)
O60.0482 (16)0.0239 (14)0.0425 (17)−0.0089 (12)−0.0098 (13)−0.0115 (13)
Mn10.0326 (3)0.0273 (3)0.0316 (4)−0.0081 (2)−0.0036 (3)−0.0088 (3)
Mn20.0341 (4)0.0253 (4)0.0306 (5)−0.0070 (3)−0.0073 (4)−0.0067 (4)

Geometric parameters (Å, °)

C1—N11.329 (5)C21—H21A0.9700
C1—C21.383 (6)C21—H21B0.9700
C1—H10.9300C22—C231.523 (6)
C2—C31.379 (6)C22—H22A0.9700
C2—H20.9300C22—H22B0.9700
C3—C41.403 (6)C23—C241.520 (5)
C3—H30.9300C23—C251.529 (6)
C4—C51.396 (5)C23—H230.9800
C4—C121.472 (5)C24—O31.234 (5)
C5—N11.351 (5)C24—O41.253 (5)
C5—C61.464 (5)C25—C261.526 (6)
C6—N21.351 (5)C25—H25A0.9700
C6—C101.397 (5)C25—H25B0.9700
C7—N21.337 (5)C26—H26A0.9700
C7—C81.389 (6)C26—H26B0.9700
C7—H70.9300C27—O51.243 (5)
C8—C91.368 (6)C27—O61.283 (5)
C8—H80.9300C27—C281.514 (6)
C9—C101.391 (6)C28—C301.500 (6)
C9—H90.9300C28—C291.539 (6)
C10—C111.461 (5)C28—H280.9800
C11—N41.325 (5)C29—C30i1.533 (6)
C11—C121.428 (6)C29—H29A0.9700
C12—N31.322 (5)C29—H29B0.9700
C13—N31.365 (5)C30—C29i1.533 (6)
C13—C181.411 (6)C30—H30A0.9700
C13—C141.414 (6)C30—H30B0.9700
C14—C151.360 (6)N1—Mn12.356 (3)
C14—H140.9300N2—Mn12.303 (3)
C15—C161.395 (7)O1—Mn22.102 (3)
C15—H150.9300O2—Mn12.107 (3)
C16—C171.356 (6)O3—Mn2ii2.165 (3)
C16—H160.9300O3—Mn1ii2.495 (4)
C17—C181.408 (6)O4—Mn1ii2.200 (3)
C17—H170.9300O5—Mn12.312 (3)
C18—N41.364 (5)O6—Mn22.218 (3)
C19—O11.251 (5)O6—Mn12.314 (3)
C19—O21.253 (5)Mn1—O4iii2.200 (3)
C19—C201.531 (5)Mn1—O3iii2.495 (4)
C20—C261.531 (6)Mn2—O1iv2.102 (3)
C20—C211.536 (6)Mn2—O3v2.165 (3)
C20—H200.9800Mn2—O3iii2.165 (3)
C21—C221.521 (5)Mn2—O6iv2.218 (3)
N1—C1—C2123.2 (4)C23—C25—H25A109.5
N1—C1—H1118.4C26—C25—H25B109.5
C2—C1—H1118.4C23—C25—H25B109.5
C3—C2—C1119.0 (4)H25A—C25—H25B108.0
C3—C2—H2120.5C25—C26—C20111.9 (3)
C1—C2—H2120.5C25—C26—H26A109.2
C2—C3—C4119.0 (4)C20—C26—H26A109.2
C2—C3—H3120.5C25—C26—H26B109.2
C4—C3—H3120.5C20—C26—H26B109.2
C5—C4—C3118.0 (4)H26A—C26—H26B107.9
C5—C4—C12120.2 (3)O5—C27—O6121.1 (4)
C3—C4—C12121.8 (4)O5—C27—C28122.5 (4)
N1—C5—C4122.5 (4)O6—C27—C28116.3 (4)
N1—C5—C6116.7 (3)C30—C28—C27114.1 (4)
C4—C5—C6120.8 (3)C30—C28—C29111.5 (3)
N2—C6—C10122.6 (4)C27—C28—C29108.7 (4)
N2—C6—C5117.5 (3)C30—C28—H28107.4
C10—C6—C5119.9 (3)C27—C28—H28107.4
N2—C7—C8122.9 (4)C29—C28—H28107.4
N2—C7—H7118.5C30i—C29—C28110.7 (4)
C8—C7—H7118.5C30i—C29—H29A109.5
C9—C8—C7119.5 (4)C28—C29—H29A109.5
C9—C8—H8120.3C30i—C29—H29B109.5
C7—C8—H8120.3C28—C29—H29B109.5
C8—C9—C10118.8 (4)H29A—C29—H29B108.1
C8—C9—H9120.6C28—C30—C29i111.0 (4)
C10—C9—H9120.6C28—C30—H30A109.4
C9—C10—C6118.5 (4)C29i—C30—H30A109.4
C9—C10—C11121.6 (4)C28—C30—H30B109.4
C6—C10—C11119.9 (3)C29i—C30—H30B109.4
N4—C11—C12121.9 (4)H30A—C30—H30B108.0
N4—C11—C10117.4 (4)C1—N1—C5118.2 (4)
C12—C11—C10120.6 (3)C1—N1—Mn1125.1 (3)
N3—C12—C11122.4 (3)C5—N1—Mn1116.4 (2)
N3—C12—C4119.1 (4)C7—N2—C6117.6 (3)
C11—C12—C4118.5 (3)C7—N2—Mn1124.1 (3)
N3—C13—C18121.2 (4)C6—N2—Mn1117.8 (3)
N3—C13—C14120.0 (4)C12—N3—C13116.4 (3)
C18—C13—C14118.8 (4)C11—N4—C18116.3 (3)
C15—C14—C13119.8 (4)C19—O1—Mn2137.6 (3)
C15—C14—H14120.1C19—O2—Mn1130.2 (3)
C13—C14—H14120.1C24—O3—Mn2ii158.1 (3)
C14—C15—C16121.5 (4)C24—O3—Mn1ii86.0 (3)
C14—C15—H15119.3Mn2ii—O3—Mn1ii93.87 (12)
C16—C15—H15119.3C24—O4—Mn1ii99.5 (3)
C17—C16—C15120.0 (4)C27—O5—Mn191.5 (2)
C17—C16—H16120.0C27—O6—Mn2124.5 (3)
C15—C16—H16120.0C27—O6—Mn190.3 (2)
C16—C17—C18120.5 (4)Mn2—O6—Mn197.62 (11)
C16—C17—H17119.8O2—Mn1—O4iii95.86 (12)
C18—C17—H17119.8O2—Mn1—N2120.52 (12)
N4—C18—C17118.7 (4)O4iii—Mn1—N282.87 (12)
N4—C18—C13121.8 (4)O2—Mn1—O5147.38 (12)
C17—C18—C13119.5 (4)O4iii—Mn1—O5108.96 (13)
O1—C19—O2124.9 (4)N2—Mn1—O584.24 (12)
O1—C19—C20116.1 (3)O2—Mn1—O691.43 (11)
O2—C19—C20118.9 (4)O4iii—Mn1—O6127.44 (12)
C19—C20—C26110.3 (4)N2—Mn1—O6135.18 (11)
C19—C20—C21114.4 (3)O5—Mn1—O656.78 (10)
C26—C20—C21110.8 (3)O2—Mn1—N184.36 (11)
C19—C20—H20107.0O4iii—Mn1—N1148.93 (13)
C26—C20—H20107.0N2—Mn1—N170.66 (12)
C21—C20—H20107.0O5—Mn1—N184.83 (12)
C22—C21—C20112.2 (3)O6—Mn1—N183.54 (12)
C22—C21—H21A109.2O2—Mn1—O3iii91.42 (12)
C20—C21—H21A109.2O4iii—Mn1—O3iii54.17 (12)
C22—C21—H21B109.2N2—Mn1—O3iii129.79 (12)
C20—C21—H21B109.2O5—Mn1—O3iii86.59 (12)
H21A—C21—H21B107.9O6—Mn1—O3iii73.72 (11)
C21—C22—C23111.7 (3)N1—Mn1—O3iii156.77 (12)
C21—C22—H22A109.3O1iv—Mn2—O1180.00 (17)
C23—C22—H22A109.3O1iv—Mn2—O3v89.57 (15)
C21—C22—H22B109.3O1—Mn2—O3v90.43 (15)
C23—C22—H22B109.3O1iv—Mn2—O3iii90.43 (15)
H22A—C22—H22B107.9O1—Mn2—O3iii89.57 (15)
C24—C23—C22112.7 (3)O3v—Mn2—O3iii180.0 (2)
C24—C23—C25112.4 (4)O1iv—Mn2—O689.89 (11)
C22—C23—C25110.7 (3)O1—Mn2—O690.11 (11)
C24—C23—H23106.9O3v—Mn2—O697.56 (12)
C22—C23—H23106.9O3iii—Mn2—O682.44 (12)
C25—C23—H23106.9O1iv—Mn2—O6iv90.11 (11)
O3—C24—O4120.0 (4)O1—Mn2—O6iv89.89 (11)
O3—C24—C23120.7 (4)O3v—Mn2—O6iv82.44 (12)
O4—C24—C23119.2 (4)O3iii—Mn2—O6iv97.56 (12)
C26—C25—C23110.9 (4)O6—Mn2—O6iv180.00 (11)
C26—C25—H25A109.5

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+2, −y+1, −z; (v) −x+3, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2704).

References

  • De, G. (2007). Acta Cryst. E63, m1748–m1749.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, Y.-J. (2007). Acta Cryst. E63, m1654–m1655.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography