PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m813.
Published online 2008 May 14. doi:  10.1107/S1600536808013123
PMCID: PMC2961628

Tetra­aqua­bis[1,1′-(4-methoxy­naph­thalene-1,3-diyldimethyl­ene)pyridinium-3-carboxyl­ate-κO]cobalt(II) bis­(perchlorate) hexa­hydrate

Abstract

In the molecule of the centrosymmetric title compound, [Co(C25H20N2O5)2(H2O)4](ClO4)2·6H2O, the Co atom is octa­hedrally coordinated by four water mol­ecules lying in the equatorial plane and two monodentate carboxyl­ate groups from two dicarboxylate ligands. The crystal structure involves O—H(...)O and O—H(...)Cl hydrogen bonds..

Related literature

For related literature, see: Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m813-scheme1.jpg

Experimental

Crystal data

  • [Co(C25H20N2O5)2(H2O)4](ClO4)2·6H2O
  • M r = 1294.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m813-efi1.jpg
  • a = 7.9162 (19) Å
  • b = 12.703 (3) Å
  • c = 14.757 (3) Å
  • α = 71.159 (6)°
  • β = 89.759 (8)°
  • γ = 77.175 (7)°
  • V = 1365.7 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 113 (2) K
  • 0.18 × 0.16 × 0.14 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.914, T max = 0.932
  • 12559 measured reflections
  • 4738 independent reflections
  • 4261 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.128
  • S = 1.08
  • 4738 reflections
  • 417 parameters
  • 17 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.27 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2002 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure (Rigaku, 2002 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013123/gw2035sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013123/gw2035Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, corrdination chemistry becomes more and more important in the structural design of supramolecular chemistry. The deprotonated carboxyl group, which easily coordinated to metal atoms and can be used to prepare soluble metal complexes. During the synthesis of polymeric complexes using 3-methoxyl-1,3-pyridinium-3-carboxylate (L) as bridging ligand, to our surprise, the title monomeric Co complex was obtained.

As shown in Fig. 1, the stucture of the title compound, (I), four water molecules and two monodentate carboxylate groups from L ligands corrdinate to Co. the other three water molecules and carboxylate group of the ligand L and the perchlorate anion are free from corrdination.

For related literature, see: Li et al. (2006).

Experimental

An aqueous and water (V/V=1:1) solution of L (0.042 g, 0.1 mmol)and Co(ClO4)6H2O (0.11 g, 0.3 mmol) was stirred at 333 K for 10 min and then left to stand at room temperature. Single crystals of (I) were obtained after 3 d.

Refinement

(type here to add refinement details)

Figures

Fig. 1.
The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Crystal data

[Co(C25H20N2O5)2(H2O)4](ClO4)2·6H2OZ = 1
Mr = 1294.86F000 = 673
Triclinic, P1Dx = 1.574 Mg m3
a = 7.9162 (19) ÅMo Kα radiation λ = 0.71070 Å
b = 12.703 (3) ÅCell parameters from 4046 reflections
c = 14.757 (3) Åθ = 2.6–27.8º
α = 71.159 (6)ºµ = 0.51 mm1
β = 89.759 (8)ºT = 113 (2) K
γ = 77.175 (7)ºPrism, colorless
V = 1365.7 (5) Å30.18 × 0.16 × 0.14 mm

Data collection

Rigaku Saturn diffractometer4738 independent reflections
Radiation source: fine-focus sealed tube4261 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
Detector resolution: 7.31 pixels mm-1θmax = 25.0º
T = 113(2) Kθmin = 2.7º
ω scansh = −9→9
Absorption correction: multi-scan(Jacobson, 1998)k = −13→15
Tmin = 0.914, Tmax = 0.932l = −17→17
12559 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128  w = 1/[σ2(Fo2) + (0.0385P)2 + 4.0784P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
4738 reflectionsΔρmax = 1.27 e Å3
417 parametersΔρmin = −0.45 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.50000.50000.50000.0166 (3)
N10.7742 (5)0.6740 (4)0.2020 (3)0.0175 (9)
N20.7187 (6)0.1380 (4)0.2728 (3)0.0228 (10)
O11.1365 (7)0.4585 (4)0.4208 (5)0.073 (2)
O21.2985 (5)0.5855 (3)0.3906 (3)0.0245 (9)
O30.6931 (6)0.2768 (4)0.0159 (4)0.0443 (12)
O41.1873 (5)0.1697 (3)0.3646 (3)0.0325 (10)
O51.2889 (5)−0.0172 (3)0.4167 (3)0.0321 (10)
C11.1687 (7)0.5520 (5)0.3763 (4)0.0277 (13)
C21.0353 (7)0.6348 (5)0.2975 (4)0.0220 (12)
C31.0486 (7)0.7466 (5)0.2532 (4)0.0268 (13)
H31.14460.77170.27010.032*
C40.9214 (7)0.8213 (5)0.1842 (4)0.0266 (13)
H40.92920.89820.15380.032*
C50.7833 (7)0.7839 (4)0.1596 (4)0.0217 (11)
H50.69460.83520.11300.026*
C60.8963 (7)0.6001 (4)0.2702 (4)0.0203 (11)
H60.88620.52350.29970.024*
C70.6205 (7)0.6347 (5)0.1771 (4)0.0222 (12)
H7A0.54140.70000.12880.027*
H7B0.55670.61140.23540.027*
C80.6653 (7)0.5364 (4)0.1382 (4)0.0213 (12)
C90.7197 (7)0.5518 (5)0.0436 (4)0.0238 (12)
C100.7556 (11)0.6557 (5)−0.0161 (4)0.0432 (19)
H100.73890.71900.00660.052*
C110.8159 (8)0.6675 (6)−0.1092 (5)0.0381 (15)
H110.84910.7356−0.14540.046*
C120.8263 (8)0.5787 (6)−0.1474 (5)0.0387 (15)
H120.86200.5871−0.21040.046*
C130.7823 (8)0.4757 (5)−0.0902 (4)0.0307 (14)
H130.78520.4160−0.11610.037*
C140.7340 (7)0.4612 (5)0.0052 (4)0.0243 (12)
C150.6947 (7)0.3564 (5)0.0618 (5)0.0260 (13)
C160.6448 (7)0.3420 (4)0.1539 (5)0.0278 (14)
C170.6314 (7)0.4329 (5)0.1918 (4)0.0243 (12)
H170.59820.42230.25550.029*
C180.8347 (13)0.1867 (7)0.0329 (7)0.068 (3)
H18A0.93850.21570.01280.082*
H18B0.81660.1373−0.00350.082*
H18C0.85040.14270.10160.082*
C190.5813 (7)0.2382 (5)0.2098 (5)0.0327 (15)
H19A0.52530.21210.16380.039*
H19B0.49110.26100.25080.039*
C200.6727 (7)0.0366 (5)0.3076 (4)0.0261 (12)
H200.55970.03110.29140.031*
C210.7884 (8)−0.0581 (5)0.3660 (4)0.0280 (13)
H210.7556−0.12900.39070.034*
C220.9537 (7)−0.0498 (5)0.3889 (4)0.0249 (12)
H221.0363−0.11570.42720.030*
C230.9980 (7)0.0553 (4)0.3556 (4)0.0209 (11)
C240.8756 (7)0.1483 (4)0.2974 (4)0.0223 (12)
H240.90330.22100.27440.027*
C251.1779 (7)0.0706 (5)0.3813 (4)0.0241 (12)
Cl10.30440 (18)0.00621 (11)0.11433 (10)0.0254 (4)
O60.2137 (9)0.0363 (5)0.1891 (3)0.072 (2)
O70.4485 (8)0.0568 (5)0.0958 (6)0.075 (2)
O80.1939 (7)0.0440 (4)0.0298 (3)0.0463 (13)
O90.3657 (6)−0.1168 (3)0.1445 (3)0.0324 (10)
O101.6526 (5)0.6076 (3)0.4204 (3)0.0222 (8)
H10A1.604 (7)0.678 (4)0.399 (4)0.033*
H10B1.724 (7)0.597 (5)0.467 (4)0.033*
O111.4046 (5)0.6184 (3)0.5691 (3)0.0241 (9)
H11A1.293 (5)0.645 (5)0.563 (5)0.036*
H11B1.447 (7)0.676 (5)0.566 (5)0.036*
O120.9425 (6)0.3085 (4)0.4369 (4)0.0470 (14)
H12A0.985 (10)0.365 (5)0.431 (6)0.070*
H12B1.017 (9)0.260 (5)0.418 (6)0.070*
O130.5220 (6)0.1760 (3)0.6610 (3)0.0319 (10)
H13A0.589 (8)0.128 (5)0.639 (4)0.048*
H13B0.562 (9)0.160 (6)0.720 (3)0.048*
O140.5114 (6)0.8080 (3)0.5631 (4)0.0372 (11)
H14A0.598 (7)0.828 (6)0.582 (5)0.056*
H14B0.444 (8)0.871 (5)0.528 (5)0.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0134 (5)0.0155 (5)0.0214 (6)−0.0038 (4)−0.0016 (4)−0.0065 (4)
N10.018 (2)0.018 (2)0.017 (2)−0.0025 (17)−0.0011 (17)−0.0080 (18)
N20.017 (2)0.017 (2)0.034 (3)−0.0035 (18)0.001 (2)−0.008 (2)
O10.064 (4)0.032 (3)0.097 (5)−0.031 (3)−0.062 (3)0.027 (3)
O20.0179 (19)0.024 (2)0.031 (2)−0.0065 (15)−0.0067 (16)−0.0058 (17)
O30.043 (3)0.034 (2)0.063 (3)−0.006 (2)−0.001 (2)−0.028 (2)
O40.018 (2)0.027 (2)0.054 (3)−0.0024 (16)−0.0073 (19)−0.017 (2)
O50.028 (2)0.028 (2)0.035 (2)0.0062 (18)−0.0103 (18)−0.0130 (19)
C10.027 (3)0.018 (3)0.036 (3)−0.006 (2)−0.013 (3)−0.005 (2)
C20.020 (3)0.020 (3)0.026 (3)−0.004 (2)−0.006 (2)−0.007 (2)
C30.024 (3)0.025 (3)0.032 (3)−0.010 (2)−0.006 (2)−0.007 (2)
C40.029 (3)0.018 (3)0.031 (3)−0.008 (2)−0.004 (2)−0.003 (2)
C50.023 (3)0.020 (3)0.020 (3)0.000 (2)−0.001 (2)−0.007 (2)
C60.020 (3)0.017 (3)0.023 (3)−0.004 (2)−0.003 (2)−0.005 (2)
C70.018 (3)0.024 (3)0.026 (3)−0.005 (2)−0.005 (2)−0.011 (2)
C80.018 (3)0.018 (3)0.026 (3)−0.002 (2)−0.012 (2)−0.006 (2)
C90.022 (3)0.021 (3)0.025 (3)−0.001 (2)−0.015 (2)−0.005 (2)
C100.089 (6)0.010 (3)0.022 (3)0.005 (3)−0.034 (3)−0.004 (2)
C110.032 (3)0.042 (4)0.036 (4)−0.009 (3)0.001 (3)−0.007 (3)
C120.033 (3)0.046 (4)0.032 (4)−0.001 (3)0.000 (3)−0.011 (3)
C130.029 (3)0.031 (3)0.032 (3)0.005 (2)−0.012 (3)−0.018 (3)
C140.014 (3)0.021 (3)0.035 (3)0.002 (2)−0.010 (2)−0.010 (2)
C150.016 (3)0.020 (3)0.044 (4)−0.001 (2)−0.005 (2)−0.015 (3)
C160.014 (3)0.013 (3)0.051 (4)0.000 (2)−0.013 (3)−0.005 (3)
C170.017 (3)0.023 (3)0.029 (3)−0.002 (2)−0.011 (2)−0.005 (2)
C180.081 (6)0.050 (5)0.069 (6)0.020 (4)−0.024 (5)−0.036 (5)
C190.018 (3)0.020 (3)0.054 (4)−0.002 (2)−0.007 (3)−0.005 (3)
C200.025 (3)0.021 (3)0.036 (3)−0.011 (2)0.003 (2)−0.011 (2)
C210.034 (3)0.019 (3)0.032 (3)−0.012 (2)0.003 (3)−0.006 (2)
C220.029 (3)0.019 (3)0.022 (3)0.000 (2)−0.002 (2)−0.006 (2)
C230.024 (3)0.019 (3)0.020 (3)−0.003 (2)0.001 (2)−0.008 (2)
C240.017 (3)0.018 (3)0.033 (3)−0.005 (2)0.001 (2)−0.009 (2)
C250.023 (3)0.023 (3)0.025 (3)0.002 (2)−0.003 (2)−0.012 (2)
Cl10.0301 (7)0.0203 (7)0.0229 (7)0.0008 (5)−0.0019 (6)−0.0076 (5)
O60.110 (5)0.048 (3)0.025 (3)0.039 (3)0.012 (3)−0.006 (2)
O70.058 (4)0.046 (3)0.133 (6)−0.031 (3)0.002 (4)−0.034 (4)
O80.053 (3)0.043 (3)0.032 (3)0.006 (2)−0.018 (2)−0.008 (2)
O90.041 (2)0.018 (2)0.034 (2)0.0019 (18)−0.0040 (19)−0.0081 (18)
O100.0179 (19)0.0174 (19)0.028 (2)−0.0036 (15)−0.0002 (16)−0.0041 (16)
O110.0197 (19)0.024 (2)0.034 (2)−0.0066 (16)0.0017 (17)−0.0143 (18)
O120.025 (2)0.026 (2)0.098 (4)−0.0120 (19)0.014 (2)−0.027 (3)
O130.036 (2)0.022 (2)0.031 (2)0.0036 (18)−0.0073 (19)−0.0067 (18)
O140.032 (2)0.022 (2)0.055 (3)−0.0050 (18)−0.020 (2)−0.010 (2)

Geometric parameters (Å, °)

Co1—O112.086 (4)C12—C131.426 (9)
Co1—O11i2.086 (4)C12—H120.9500
Co1—O102.096 (4)C13—C141.422 (9)
Co1—O10i2.096 (4)C13—H130.9500
Co1—O2i2.110 (4)C14—C151.425 (8)
Co1—O22.110 (4)C15—C161.380 (9)
N1—C61.351 (7)C16—C171.422 (8)
N1—C51.350 (7)C16—C191.503 (8)
N1—C71.502 (6)C17—H170.9500
N2—C241.340 (7)C18—H18A0.9800
N2—C201.355 (7)C18—H18B0.9800
N2—C191.516 (7)C18—H18C0.9800
O1—C11.240 (7)C19—H19A0.9900
O2—C11.240 (7)C19—H19B0.9900
O3—C181.370 (9)C20—C211.370 (8)
O3—C151.389 (7)C20—H200.9500
O4—C251.222 (7)C21—C221.388 (8)
O5—C251.217 (7)C21—H210.9500
C1—C21.517 (8)C22—C231.389 (8)
C2—C61.379 (7)C22—H220.9500
C2—C31.386 (8)C23—C241.384 (8)
C3—C41.383 (8)C23—C251.544 (8)
C3—H30.9500C24—H240.9500
C4—C51.378 (8)Cl1—O81.410 (5)
C4—H40.9500Cl1—O71.413 (5)
C5—H50.9500Cl1—O61.423 (5)
C6—H60.9500Cl1—O91.446 (4)
C7—C81.509 (7)O10—H10A0.84 (4)
C7—H7A0.9900O10—H10B0.85 (4)
C7—H7B0.9900O11—H11A0.87 (4)
C8—C171.382 (8)O11—H11B0.86 (4)
C8—C91.424 (8)O12—H12A0.83 (4)
C9—C101.419 (9)O12—H12B0.87 (4)
C9—C141.421 (8)O13—H13A0.86 (4)
C10—C111.425 (10)O13—H13B0.86 (4)
C10—H100.9500O14—H14A0.86 (4)
C11—C121.402 (10)O14—H14B0.86 (4)
C11—H110.9500
O11—Co1—O11i180.0C13—C12—H12120.5
O11—Co1—O1089.89 (15)C14—C13—C12120.8 (5)
O11i—Co1—O1090.11 (15)C14—C13—H13119.6
O11—Co1—O10i90.11 (15)C12—C13—H13119.6
O11i—Co1—O10i89.89 (15)C9—C14—C13120.4 (5)
O10—Co1—O10i179.999 (1)C9—C14—C15119.7 (5)
O11—Co1—O2i90.63 (15)C13—C14—C15119.8 (5)
O11i—Co1—O2i89.37 (15)C16—C15—O3123.0 (5)
O10—Co1—O2i91.78 (15)C16—C15—C14120.4 (5)
O10i—Co1—O2i88.22 (15)O3—C15—C14116.3 (6)
O11—Co1—O289.37 (15)C15—C16—C17119.5 (5)
O11i—Co1—O290.63 (15)C15—C16—C19120.9 (5)
O10—Co1—O288.22 (15)C17—C16—C19119.1 (6)
O10i—Co1—O291.78 (15)C8—C17—C16121.6 (6)
O2i—Co1—O2179.998 (1)C8—C17—H17119.2
C6—N1—C5121.2 (4)C16—C17—H17119.2
C6—N1—C7119.1 (4)O3—C18—H18A109.5
C5—N1—C7119.6 (4)O3—C18—H18B109.5
C24—N2—C20120.7 (5)H18A—C18—H18B109.5
C24—N2—C19122.8 (4)O3—C18—H18C109.5
C20—N2—C19116.5 (4)H18A—C18—H18C109.5
C1—O2—Co1127.1 (4)H18B—C18—H18C109.5
C18—O3—C15117.9 (6)C16—C19—N2115.7 (4)
O2—C1—O1126.4 (5)C16—C19—H19A108.3
O2—C1—C2116.4 (5)N2—C19—H19A108.3
O1—C1—C2117.2 (5)C16—C19—H19B108.3
C6—C2—C3118.9 (5)N2—C19—H19B108.3
C6—C2—C1120.1 (5)H19A—C19—H19B107.4
C3—C2—C1121.0 (5)N2—C20—C21120.3 (5)
C4—C3—C2119.6 (5)N2—C20—H20119.8
C4—C3—H3120.2C21—C20—H20119.8
C2—C3—H3120.2C20—C21—C22119.6 (5)
C5—C4—C3119.8 (5)C20—C21—H21120.2
C5—C4—H4120.1C22—C21—H21120.2
C3—C4—H4120.1C21—C22—C23119.7 (5)
N1—C5—C4119.8 (5)C21—C22—H22120.1
N1—C5—H5120.1C23—C22—H22120.1
C4—C5—H5120.1C24—C23—C22118.2 (5)
N1—C6—C2120.6 (5)C24—C23—C25119.7 (5)
N1—C6—H6119.7C22—C23—C25122.1 (5)
C2—C6—H6119.7N2—C24—C23121.4 (5)
N1—C7—C8114.6 (4)N2—C24—H24119.3
N1—C7—H7A108.6C23—C24—H24119.3
C8—C7—H7A108.6O5—C25—O4129.2 (5)
N1—C7—H7B108.6O5—C25—C23115.8 (5)
C8—C7—H7B108.6O4—C25—C23115.0 (5)
H7A—C7—H7B107.6O8—Cl1—O7109.3 (4)
C17—C8—C9119.5 (5)O8—Cl1—O6110.4 (3)
C17—C8—C7118.3 (5)O7—Cl1—O6109.7 (4)
C9—C8—C7121.7 (5)O8—Cl1—O9109.5 (3)
C10—C9—C14117.9 (5)O7—Cl1—O9109.0 (3)
C10—C9—C8122.8 (5)O6—Cl1—O9108.9 (3)
C14—C9—C8119.3 (5)Co1—O10—H10A116 (5)
C9—C10—C11121.7 (5)Co1—O10—H10B96 (4)
C9—C10—H10119.1H10A—O10—H10B109 (4)
C11—C10—H10119.1Co1—O11—H11A116 (4)
C12—C11—C10120.0 (6)Co1—O11—H11B124 (4)
C12—C11—H11120.0H11A—O11—H11B105 (4)
C10—C11—H11120.0H12A—O12—H12B107 (5)
C11—C12—C13119.0 (6)H13A—O13—H13B105 (4)
C11—C12—H12120.5H14A—O14—H14B105 (4)
O11—Co1—O2—C1−107.3 (5)C10—C9—C14—C15−178.3 (5)
O11i—Co1—O2—C172.7 (5)C8—C9—C14—C15−0.2 (7)
O10—Co1—O2—C1162.8 (5)C12—C13—C14—C93.4 (8)
O10i—Co1—O2—C1−17.2 (5)C12—C13—C14—C15−178.5 (5)
O2i—Co1—O2—C140 (29)C18—O3—C15—C16−84.6 (8)
Co1—O2—C1—O1−4.0 (10)C18—O3—C15—C14101.7 (8)
Co1—O2—C1—C2174.9 (4)C9—C14—C15—C16−0.8 (8)
O2—C1—C2—C6173.3 (5)C13—C14—C15—C16−178.9 (5)
O1—C1—C2—C6−7.7 (9)C9—C14—C15—O3173.1 (5)
O2—C1—C2—C3−8.1 (9)C13—C14—C15—O3−5.0 (7)
O1—C1—C2—C3171.0 (7)O3—C15—C16—C17−172.9 (5)
C6—C2—C3—C41.2 (9)C14—C15—C16—C170.6 (8)
C1—C2—C3—C4−177.5 (6)O3—C15—C16—C19−1.3 (8)
C2—C3—C4—C5−0.4 (9)C14—C15—C16—C19172.2 (5)
C6—N1—C5—C41.7 (8)C9—C8—C17—C16−1.7 (8)
C7—N1—C5—C4178.1 (5)C7—C8—C17—C16170.2 (5)
C3—C4—C5—N1−1.1 (9)C15—C16—C17—C80.7 (8)
C5—N1—C6—C2−1.0 (8)C19—C16—C17—C8−171.1 (5)
C7—N1—C6—C2−177.4 (5)C15—C16—C19—N292.2 (7)
C3—C2—C6—N1−0.5 (8)C17—C16—C19—N2−96.1 (6)
C1—C2—C6—N1178.2 (5)C24—N2—C19—C1616.4 (8)
C6—N1—C7—C8−61.4 (6)C20—N2—C19—C16−166.5 (5)
C5—N1—C7—C8122.1 (5)C24—N2—C20—C21−2.2 (8)
N1—C7—C8—C17114.7 (5)C19—N2—C20—C21−179.3 (5)
N1—C7—C8—C9−73.6 (6)N2—C20—C21—C22−0.5 (9)
C17—C8—C9—C10179.5 (5)C20—C21—C22—C232.6 (9)
C7—C8—C9—C107.8 (8)C21—C22—C23—C24−2.2 (8)
C17—C8—C9—C141.5 (7)C21—C22—C23—C25178.1 (5)
C7—C8—C9—C14−170.2 (5)C20—N2—C24—C232.6 (8)
C14—C9—C10—C11−4.3 (9)C19—N2—C24—C23179.6 (5)
C8—C9—C10—C11177.6 (6)C22—C23—C24—N2−0.4 (8)
C9—C10—C11—C125.8 (10)C25—C23—C24—N2179.3 (5)
C10—C11—C12—C13−2.5 (9)C24—C23—C25—O5−166.5 (5)
C11—C12—C13—C14−2.0 (9)C22—C23—C25—O513.3 (8)
C10—C9—C14—C13−0.2 (8)C24—C23—C25—O414.9 (8)
C8—C9—C14—C13177.9 (5)C22—C23—C25—O4−165.4 (5)

Symmetry codes: (i) −x+3, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O10—H10A···O13ii0.84 (4)1.83 (4)2.665 (5)171 (6)
O10—H10B···O1i0.85 (4)1.84 (4)2.668 (6)166 (6)
O11—H11A···O12ii0.87 (4)1.83 (4)2.690 (6)174 (7)
O11—H11B···O14iii0.86 (4)1.85 (4)2.701 (5)173 (6)
O12—H12A···O10.83 (4)1.84 (5)2.654 (6)164 (8)
O12—H12B···O40.87 (4)1.91 (4)2.772 (6)173 (8)
O13—H13A···O5iv0.86 (4)1.94 (4)2.787 (6)172 (7)
O13—H13B···O9v0.86 (4)1.95 (4)2.815 (6)175 (7)
O13—H13B···Cl1v0.86 (4)2.69 (6)3.451 (4)147 (6)
O14—H14A···O4ii0.86 (4)1.88 (4)2.724 (6)165 (7)
O14—H14B···O5vi0.86 (4)1.98 (4)2.811 (6)160 (7)

Symmetry codes: (ii) −x+2, −y+1, −z+1; (i) −x+3, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z+1; (vi) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2035).

References

  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Li, H.-S., Li, S.-L. & Hou, J.-F. (2006). Acta Cryst. E62, m2143–m2144.
  • Rigaku (2002). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography