PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): i33.
Published online 2008 May 10. doi:  10.1107/S1600536808013032
PMCID: PMC2961625

Lutetium ultraphosphate

Abstract

The structure of the title compound, LuP5O14, comprises puckered eight-membered PO4 rings linked by the lutetium cations in a complex way, forming a three-dimensional framework. Each eight-membered phosphate ring shares a bridging tetra­hedron with each of four adjacent tetra­hedra, to form layers of PO4 tetra­hedra. These layers are c/2 in thickness and parallel to the ab plane. Each Lu ion is contained in one such layer, forming bonds to six O atoms in that layer and also to one O atom belonging to a tetra­hedron in each of the layers lying above and below it. The LuO8 polyhedra are isolated from one another, since they share no common atoms. The Lu ions lie on twofold axes (special position 4e) and the shortest Lu(...)Lu distance is 5.703 (1) Å.

Related literature

For related literature, see: Durif (1971 [triangle]); Hong (1974 [triangle]); Hong & Pierce (1974 [triangle]). For the classification of ultraphosphates, see: Bagieu-Beucher & Tranqui (1970 [triangle]).

Experimental

Crystal data

  • LuP5O14
  • M r = 553.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i33-efi9.jpg
  • a = 12.8128 (14) Å
  • b = 12.6821 (13) Å
  • c = 12.3330 (13) Å
  • β = 91.295 (3)°
  • V = 2003.5 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 10.74 mm−1
  • T = 298 (2) K
  • 0.20 × 0.19 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.121, T max = 0.145
  • 10422 measured reflections
  • 2912 independent reflections
  • 2734 reflections with I > 2σ(I)
  • R int = 0.031
  • 2 standard reflections every 150 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.050
  • S = 1.08
  • 2912 reflections
  • 183 parameters
  • Δρmax = 1.34 e Å−3
  • Δρmin = −0.98 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992 [triangle]; Enraf–Nonius, 1994 [triangle]; Macíček & Yordanov, 1992 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013032/br2072sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013032/br2072Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

The structure of LuP5O14 is a type (II) rare-earth ultraphosphates as classified by Bagieu-Beucher & Tranqui (1970), since it crystallizes in the monoclinic system with space group C2/c. In this structure, the lutetium ion is surrounded by eight oxygen atoms that form distorted polyhedra. Each of the oxygen atoms in the LuO8 polyhedra are shared exclusively with PO4 tetrahedra to form a three-dimensional framework, which delimits interesting tunnels (Fig.1). The structure is built up from (PO4) tetrahedra (Fig.2) which are cross-linked by bridging O atoms, but these do not form helical ribbons, as in the NdP5O14 structure type (I) (Hong, 1974), and HoP5O14 structure type (III) (Durif, 1971). The anion is being constructed from a succession of eight-membred rings interconnected through the ternary tetrahedra in a complex way (Fig.3a). The members of an individual ring are shown with yellow color. Each ring shares a bridging tetrahedron with each of four adjacent tetrahedra to form layers of PO4 tetrahedra, as illustrated in Fig.3b. These layers are about c/2 in thickness and parallel to the a-b plane. Each Lu ion is contained in one such layer, forming bonds to six oxygen in that layer and also to one oxygen belonging to a tetrahedron in each of the layers lying above and bolow it. the LuO8 polyhedra are isolated from one another, since they share no common atoms. The shortest Lu-Lu distances are 5.703. The LuP5O14 ultraphosphate is isostructural with YbP5O14 (Hong & Pierce, 1974).

Experimental

Single crystal of LuP5O14 was prepared by flux method. At room temperature, 0.5 g of Lu2O3 were slowly added to 10 ml of phosphoric acid H3PO4 (85%). The mixture was then slowly heated to 673 K and kept at this temperature for seven days. colorless, crystals were separated from the excess phosphoric acid by washing the product in boiling water.

Refinement

The highest peak and the deepest hole are located 0.79Å and 0.54 Å, respectively, from Lu1 and Lu2.

Figures

Fig. 1.
The structural arrangement of LuP5O14 along the a axis, showing tunnels in which the Lu ions are located.
Fig. 2.
Projection of the ultraphosphate with anisotropic displacement parameters drawn at the 50% probability level. [Symmetry codes: (i) x, y+1, z ; (ii)-x+5/2, y+1/2, -z+3/2 ; (iii) x+1/2, y+1/2, z; (iv)x, -y+2, z-1/2 ; (v)x-1/2, -y+3/2, z-1/2.
Fig. 3.
a) Projection of one layer showing LuO8 polyhedra and linkage of PO4 tetrahedra forming rings (yellow) in LuP5O14. b) Projection of one layer along the b axis with c/2 thickness.

Crystal data

LuP5O14F000 = 2064
Mr = 553.82Dx = 3.672 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7043 reflections
a = 12.8128 (14) Åθ = 2.3–30.0º
b = 12.6821 (13) ŵ = 10.74 mm1
c = 12.3330 (13) ÅT = 298 (2) K
β = 91.295 (3)ºPrism, colorless
V = 2003.5 (4) Å30.20 × 0.19 × 0.18 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.031
Monochromator: graphiteθmax = 30.0º
T = 298(2) Kθmin = 2.3º
ω/2θ scansh = −17→18
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −17→17
Tmin = 0.121, Tmax = 0.145l = −17→17
10422 measured reflections2 standard reflections
2912 independent reflections every 150 reflections
2734 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.028P)2 + 3.0307P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.003
wR(F2) = 0.050Δρmax = 1.34 e Å3
S = 1.08Δρmin = −0.98 e Å3
2912 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
183 parametersExtinction coefficient: 0.00637 (11)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Lu11.00001.019590 (11)0.75000.00946 (6)
Lu21.00000.469251 (11)0.75000.00947 (6)
P11.18263 (5)0.63687 (5)0.89095 (5)0.01020 (13)
P20.97504 (5)0.65029 (5)0.96672 (5)0.01037 (13)
P30.85012 (5)0.83192 (5)0.89783 (5)0.01042 (13)
P40.85469 (5)0.96507 (5)0.50182 (6)0.01080 (14)
P51.17542 (6)1.24856 (5)0.76032 (6)0.01017 (14)
O11.15332 (15)0.54741 (15)0.82204 (16)0.0131 (4)
O21.24259 (17)0.72754 (16)0.83475 (17)0.0131 (4)
O31.09081 (14)0.69824 (15)0.94396 (15)0.0120 (3)
O41.24970 (13)0.60463 (17)0.99342 (13)0.0121 (4)
O50.97503 (15)0.59905 (15)1.07328 (15)0.0137 (4)
O60.93961 (15)0.59620 (15)0.86627 (15)0.0132 (4)
O70.91291 (17)0.75979 (14)0.97911 (18)0.0114 (4)
O80.90954 (15)0.87184 (15)0.80717 (15)0.0132 (4)
O90.75333 (18)0.76371 (15)0.86473 (18)0.0128 (4)
O100.80606 (15)0.91824 (14)0.97493 (15)0.0123 (4)
O110.88893 (16)0.96091 (15)0.61582 (16)0.0139 (4)
O120.92416 (15)1.06579 (15)0.91286 (15)0.0135 (4)
O131.12590 (16)0.34943 (15)0.73083 (16)0.0142 (4)
O141.11367 (16)1.15411 (15)0.78473 (16)0.0147 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Lu10.00912 (9)0.00934 (9)0.00992 (9)0.000−0.00025 (6)0.000
Lu20.00918 (9)0.00909 (8)0.01011 (9)0.000−0.00038 (6)0.000
P10.0100 (3)0.0094 (3)0.0112 (3)0.0001 (2)−0.0002 (2)0.0002 (2)
P20.0100 (3)0.0099 (3)0.0112 (3)0.0004 (2)0.0001 (2)0.0002 (2)
P30.0103 (3)0.0097 (3)0.0112 (3)−0.0001 (2)−0.0002 (2)0.0000 (2)
P40.0108 (3)0.0097 (3)0.0119 (3)−0.0006 (2)−0.0003 (2)0.0001 (2)
P50.0094 (3)0.0099 (3)0.0112 (3)−0.0002 (2)−0.0004 (3)−0.0006 (2)
O10.0125 (9)0.0125 (8)0.0143 (9)−0.0011 (7)0.0008 (7)−0.0012 (7)
O20.0142 (10)0.0108 (8)0.0144 (9)−0.0013 (7)0.0030 (7)0.0002 (7)
O30.0099 (8)0.0113 (8)0.0149 (9)0.0002 (7)0.0013 (7)−0.0004 (7)
O40.0115 (10)0.0129 (9)0.0118 (9)0.0024 (6)−0.0014 (7)−0.0003 (6)
O50.0148 (9)0.0127 (8)0.0135 (9)0.0004 (7)−0.0001 (7)0.0015 (7)
O60.0132 (9)0.0135 (8)0.0129 (9)0.0018 (7)−0.0009 (7)−0.0010 (7)
O70.0107 (10)0.0119 (8)0.0116 (9)0.0017 (6)−0.0008 (7)−0.0007 (6)
O80.0153 (9)0.0122 (8)0.0122 (8)−0.0023 (7)0.0012 (7)−0.0001 (7)
O90.0119 (10)0.0136 (8)0.0129 (10)−0.0016 (7)−0.0012 (8)0.0000 (7)
O100.0123 (9)0.0098 (8)0.0150 (9)0.0007 (7)0.0013 (7)−0.0012 (7)
O110.0150 (10)0.0142 (8)0.0125 (9)−0.0020 (7)−0.0014 (7)0.0002 (7)
O120.0143 (9)0.0129 (8)0.0135 (9)−0.0007 (7)0.0013 (7)0.0002 (7)
O130.0148 (9)0.0137 (8)0.0142 (9)0.0028 (7)−0.0001 (7)0.0002 (7)
O140.0156 (9)0.0131 (8)0.0151 (9)−0.0044 (7)−0.0009 (7)0.0002 (7)

Geometric parameters (Å, °)

Lu1—O142.2775 (19)P2—O71.6097 (19)
Lu1—O14i2.2775 (19)P2—O31.633 (2)
Lu1—O112.283 (2)P3—O81.458 (2)
Lu1—O11i2.283 (2)P3—O91.559 (2)
Lu1—O82.3213 (19)P3—O101.5638 (19)
Lu1—O8i2.3213 (19)P3—O71.566 (2)
Lu1—O122.3260 (19)P4—O111.464 (2)
Lu1—O12i2.3260 (19)P4—O12iv1.481 (2)
Lu2—O13i2.2326 (19)P4—O4v1.6111 (19)
Lu2—O132.2326 (19)P4—O10iv1.637 (2)
Lu2—O62.3016 (19)P5—O13vi1.470 (2)
Lu2—O6i2.3016 (19)P5—O141.470 (2)
Lu2—O12.356 (2)P5—O2vii1.614 (2)
Lu2—O1i2.356 (2)P5—O9viii1.623 (2)
Lu2—O5ii2.3604 (19)O2—P5ix1.614 (2)
Lu2—O5iii2.3604 (19)O4—P4x1.6111 (19)
P1—O11.462 (2)O5—Lu2iii2.3604 (19)
P1—O21.555 (2)O9—P5xi1.623 (2)
P1—O31.5659 (19)O10—P4xii1.637 (2)
P1—O41.5665 (18)O12—P4xii1.481 (2)
P2—O51.466 (2)O13—P5xiii1.470 (2)
P2—O61.479 (2)
O14—Lu1—O14i82.98 (10)O13—Lu2—O5iii76.40 (7)
O14—Lu1—O11140.00 (7)O6—Lu2—O5iii73.85 (7)
O14i—Lu1—O1173.88 (7)O6i—Lu2—O5iii142.33 (7)
O14—Lu1—O11i73.88 (7)O1—Lu2—O5iii73.25 (7)
O14i—Lu1—O11i140.00 (7)O1i—Lu2—O5iii126.65 (7)
O11—Lu1—O11i141.95 (10)O5ii—Lu2—O5iii136.94 (9)
O14—Lu1—O8150.35 (7)O1—P1—O2115.98 (12)
O14i—Lu1—O8109.89 (7)O1—P1—O3116.30 (11)
O11—Lu1—O869.49 (7)O2—P1—O3101.66 (11)
O11i—Lu1—O879.86 (7)O1—P1—O4113.30 (12)
O14—Lu1—O8i109.89 (7)O2—P1—O4106.56 (12)
O14i—Lu1—O8i150.35 (7)O3—P1—O4101.33 (10)
O11—Lu1—O8i79.86 (7)O5—P2—O6122.63 (12)
O11i—Lu1—O8i69.49 (7)O5—P2—O7106.70 (11)
O8—Lu1—O8i72.36 (10)O6—P2—O7109.67 (11)
O14—Lu1—O1285.80 (7)O5—P2—O3109.73 (11)
O14i—Lu1—O1272.29 (7)O6—P2—O3106.95 (11)
O11—Lu1—O12116.25 (7)O7—P2—O398.52 (11)
O11i—Lu1—O1273.85 (7)O8—P3—O9114.72 (12)
O8—Lu1—O1273.73 (7)O8—P3—O10115.17 (11)
O8i—Lu1—O12133.38 (7)O9—P3—O10104.58 (12)
O14—Lu1—O12i72.29 (7)O8—P3—O7115.10 (12)
O14i—Lu1—O12i85.80 (7)O9—P3—O7103.75 (11)
O11—Lu1—O12i73.85 (7)O10—P3—O7101.94 (11)
O11i—Lu1—O12i116.25 (7)O11—P4—O12iv121.99 (12)
O8—Lu1—O12i133.38 (7)O11—P4—O4v105.88 (11)
O8i—Lu1—O12i73.73 (7)O12iv—P4—O4v108.80 (11)
O12—Lu1—O12i150.82 (9)O11—P4—O10iv109.37 (11)
O13i—Lu2—O1394.22 (10)O12iv—P4—O10iv108.74 (11)
O13i—Lu2—O698.99 (7)O4v—P4—O10iv99.76 (11)
O13—Lu2—O6142.75 (7)O13vi—P5—O14121.90 (13)
O13i—Lu2—O6i142.75 (7)O13vi—P5—O2vii104.38 (11)
O13—Lu2—O6i98.99 (7)O14—P5—O2vii112.10 (11)
O6—Lu2—O6i91.22 (10)O13vi—P5—O9viii110.34 (11)
O13i—Lu2—O1147.63 (7)O14—P5—O9viii104.96 (11)
O13—Lu2—O174.22 (7)O2vii—P5—O9viii101.37 (12)
O6—Lu2—O176.11 (7)P1—O1—Lu2138.32 (12)
O6i—Lu2—O169.60 (7)P1—O2—P5ix141.48 (14)
O13i—Lu2—O1i74.22 (7)P1—O3—P2125.49 (12)
O13—Lu2—O1i147.63 (7)P1—O4—P4x129.58 (12)
O6—Lu2—O1i69.60 (7)P2—O5—Lu2iii170.97 (13)
O6i—Lu2—O1i76.11 (7)P2—O6—Lu2138.19 (12)
O1—Lu2—O1i130.25 (10)P3—O7—P2133.72 (14)
O13i—Lu2—O5ii76.40 (7)P3—O8—Lu1141.86 (12)
O13—Lu2—O5ii74.67 (7)P3—O9—P5xi138.16 (14)
O6—Lu2—O5ii142.33 (7)P3—O10—P4xii127.96 (13)
O6i—Lu2—O5ii73.85 (7)P4—O11—Lu1148.50 (12)
O1—Lu2—O5ii126.65 (7)P4xii—O12—Lu1147.46 (12)
O1i—Lu2—O5ii73.25 (7)P5xiii—O13—Lu2151.04 (13)
O13i—Lu2—O5iii74.67 (7)P5—O14—Lu1156.41 (13)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, −y+1, z−1/2; (iii) −x+2, −y+1, −z+2; (iv) x, −y+2, z−1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) x, y+1, z; (vii) −x+5/2, y+1/2, −z+3/2; (viii) x+1/2, y+1/2, z; (ix) −x+5/2, y−1/2, −z+3/2; (x) x+1/2, −y+3/2, z+1/2; (xi) x−1/2, y−1/2, z; (xii) x, −y+2, z+1/2; (xiii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2072).

References

  • Bagieu-Beucher, M. & Tranqui, D. (1970). Bull. Soc. Fr. Mineral. Cristallogr.93, 505–508.
  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Durif, A. (1971). Bull. Soc. Fr. Mineral. Cristallogr.94, 314–318.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hong, H. Y.-P. (1974). Acta Cryst. B30, 468–474.
  • Hong, H. Y.-P. & Pierce, J. W. (1974). Mater. Res. Bull.9, 179–190.
  • Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst.25, 73–80.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography