PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1163.
Published online 2008 May 30. doi:  10.1107/S160053680801547X
PMCID: PMC2961622

1-Vinyl-1H-indole-3-carbaldehyde

Abstract

In the title compound, C11H9NO, the C and O atoms of the attached carbaldehyde group deviate by just 0.052 (2) and 0.076 (1) Å, respectively, from the mean plane of the indole ring system. In addition to van der Waals forces, the mol­ecular packing is stabilized by C—H(...)O hydrogen bonds, which form a C(7) chain motif, and π–π inter­actions (centroid–centroid distance 3.637 Å) between the pyrrole and benzene rings of the indole ring system.

Related literature

For related literature, see: Padwa et al. (1999 [triangle]); Mathiesen et al. (2005 [triangle]); Grinev et al. (1984 [triangle]); Gadaginamath & Patil (1999 [triangle]); Rodriguez et al. (1985 [triangle]); Karthick et al. (2005 [triangle]); Selvanayagam et al. (2005 [triangle]); Sonar et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1163-scheme1.jpg

Experimental

Crystal data

  • C11H9NO
  • M r = 171.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1163-efi1.jpg
  • a = 8.3200 (5) Å
  • b = 8.1490 (5) Å
  • c = 13.1620 (7) Å
  • β = 99.952 (1)°
  • V = 878.95 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 9730 measured reflections
  • 2072 independent reflections
  • 1823 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.127
  • S = 1.05
  • 2072 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801547X/bt2714sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801547X/bt2714Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks the Vice Chancellor and management of Kalasalingam University, Anand Nagar, Krishnankoil, for their support and encouragement.

supplementary crystallographic information

Comment

Indoles and their derivatives have been interest for many years, since large number of natural products contain indole systems and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Indole derivatives are identified as interfering with a G protein-independent signaling pathway of the CRTH2 receptor (Mathiesen et al., 2005). These derivatives possess antidepressant (Grinev et al., 1984), anti-microbial (Gadaginamath & Patil, 1999) and anti-inflammatory (Rodriguez et al., 1985) activities. In view of its importance, we have undertaken the single-crystal X-ray diffraction study and report here its results.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of the indole ring system is comparable to those reported for other indole derivatives (Karthick et al., 2005; Selvanayagam et al., 2005; Sonar et al., 2005). The bond length of C9—C10 [1.284 (2) Å] confirms the double bond character (Allen et al., 1987). The sum of the angles at N1 of the indole ring (360°) is in accordance with sp2 hybridization.

The indole ring is planar with a maximum deviation of 0.017 (1) Å for atom C8. The carbaldehyde group atoms C11 and O1 deviate 0.052 (2) and 0.076 (1) Å, respectively from the best plane of the indole ring.

In addition to the van der Waals forces, the molecular packing is stabilized by intermolecular C—H···O hydrogen bond (Table 2). Atom H9 of C9 forms a intermolecular hydrogen bond with oxygen atom O1 forming a C(7) chain motif of C—H···O hydrogen bond along the diagonal of ac plane (Fig. 2). In addition to this a weak π···π interaction between the pyrrole ring (N1/C1/C6—C8) at (x,y,z) and benzene ring (C1—C6) at (1 -x, -y), -z) stabilizes the molecular packing. The centroid-to-centroid distance is 3.637Å.

Experimental

A mixture of N-vinylindole (0.05 mol) and DMF (0.15 mol) was stirred with POCl3 (32.3 ml). The reaction mixture was poured into ice water (300 ml) and stirred for 30minutes at less than 10° C. The precipitated solid was collected by filtration and washed well water (100 ml). In order to get the diffraction quality crystals, the compound was recrystallized from ethyl acetate.

Refinement

The H atoms were positioned geometrically with C—H distances of 0.93 Å and were included in the refinement in the riding motion approximation with Uiso= 1.2Ueq(C).

Figures

Fig. 1.
The structure and atom-numbering scheme for the title compound; displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
Molecular packing of the title compound viewed down the b axis; H-bonds are shown as dashed lines. For clarity, H atoms, not involved in hydrogen bonds, have been omitted.

Crystal data

C11H9NOF000 = 360
Mr = 171.19Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4554 reflections
a = 8.3200 (5) Åθ = 2.1–23.6º
b = 8.1490 (5) ŵ = 0.08 mm1
c = 13.1620 (7) ÅT = 293 (2) K
β = 99.952 (1)ºBlock, colourless
V = 878.95 (9) Å30.24 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer1823 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Monochromator: graphiteθmax = 28.0º
T = 293(2) Kθmin = 3.0º
ω scansh = −10→10
Absorption correction: nonek = −10→10
9730 measured reflectionsl = −17→16
2072 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1375P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2072 reflectionsΔρmax = 0.21 e Å3
118 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.81283 (15)0.20464 (18)−0.13362 (9)0.0826 (4)
N10.41791 (12)0.24005 (13)0.07004 (7)0.0469 (3)
C10.54641 (14)0.14623 (13)0.12226 (8)0.0424 (3)
C20.56155 (16)0.06833 (16)0.21713 (9)0.0505 (3)
H20.48000.07480.25720.061*
C30.70276 (18)−0.01899 (17)0.24918 (10)0.0581 (3)
H30.7166−0.07360.31210.070*
C40.82544 (17)−0.02764 (17)0.18966 (11)0.0594 (4)
H40.9197−0.08700.21390.071*
C50.80997 (15)0.04980 (16)0.09564 (10)0.0527 (3)
H50.89250.04340.05630.063*
C60.66781 (14)0.13815 (13)0.06061 (8)0.0431 (3)
C70.60762 (15)0.23003 (15)−0.03148 (9)0.0480 (3)
C80.45684 (16)0.28725 (16)−0.02188 (9)0.0503 (3)
H80.39010.3497−0.07120.060*
C90.27187 (17)0.27412 (19)0.10596 (12)0.0615 (4)
H90.27010.25210.17510.074*
C100.14066 (19)0.3327 (2)0.05257 (15)0.0779 (5)
H10A0.13650.3567−0.01690.094*
H10B0.04980.35110.08340.094*
C110.68162 (19)0.2565 (2)−0.12120 (11)0.0621 (4)
H110.62330.3191−0.17420.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0720 (7)0.1185 (10)0.0649 (7)0.0021 (6)0.0336 (6)0.0075 (6)
N10.0474 (5)0.0518 (6)0.0428 (5)0.0032 (4)0.0110 (4)−0.0026 (4)
C10.0457 (6)0.0418 (5)0.0396 (5)−0.0022 (4)0.0075 (4)−0.0069 (4)
C20.0595 (7)0.0521 (7)0.0417 (6)−0.0035 (5)0.0136 (5)−0.0023 (5)
C30.0707 (8)0.0549 (7)0.0464 (6)0.0007 (6)0.0035 (6)0.0051 (5)
C40.0562 (7)0.0544 (7)0.0641 (8)0.0080 (6)0.0011 (6)0.0007 (6)
C50.0475 (6)0.0527 (7)0.0591 (7)0.0000 (5)0.0129 (5)−0.0070 (5)
C60.0472 (6)0.0418 (6)0.0411 (5)−0.0053 (4)0.0102 (4)−0.0072 (4)
C70.0543 (7)0.0486 (6)0.0425 (6)−0.0046 (5)0.0124 (5)−0.0023 (5)
C80.0566 (7)0.0513 (7)0.0427 (6)0.0017 (5)0.0079 (5)0.0021 (5)
C90.0564 (8)0.0736 (9)0.0586 (8)0.0089 (6)0.0209 (6)−0.0013 (6)
C100.0580 (9)0.0892 (12)0.0894 (12)0.0170 (8)0.0205 (8)0.0036 (9)
C110.0670 (8)0.0743 (9)0.0481 (7)−0.0059 (7)0.0185 (6)0.0041 (6)

Geometric parameters (Å, °)

O1—C111.2079 (19)C5—C61.3933 (17)
N1—C81.3610 (16)C5—H50.9300
N1—C11.3949 (15)C6—C71.4390 (17)
N1—C91.4055 (16)C7—C81.3645 (18)
C1—C21.3869 (16)C7—C111.4393 (18)
C1—C61.4023 (16)C8—H80.9300
C2—C31.3760 (19)C9—C101.284 (2)
C2—H20.9300C9—H90.9300
C3—C41.392 (2)C10—H10A0.9300
C3—H30.9300C10—H10B0.9300
C4—C51.3751 (19)C11—H110.9300
C4—H40.9300
C8—N1—C1108.24 (10)C5—C6—C1119.20 (11)
C8—N1—C9126.55 (12)C5—C6—C7134.39 (11)
C1—N1—C9125.17 (11)C1—C6—C7106.40 (10)
C2—C1—N1129.57 (11)C8—C7—C6106.95 (10)
C2—C1—C6122.48 (11)C8—C7—C11123.72 (13)
N1—C1—C6107.94 (10)C6—C7—C11129.29 (12)
C3—C2—C1116.91 (12)N1—C8—C7110.46 (11)
C3—C2—H2121.5N1—C8—H8124.8
C1—C2—H2121.5C7—C8—H8124.8
C2—C3—C4121.60 (12)C10—C9—N1126.30 (15)
C2—C3—H3119.2C10—C9—H9116.8
C4—C3—H3119.2N1—C9—H9116.8
C5—C4—C3121.31 (12)C9—C10—H10A120.0
C5—C4—H4119.3C9—C10—H10B120.0
C3—C4—H4119.3H10A—C10—H10B120.0
C4—C5—C6118.49 (12)O1—C11—C7125.68 (15)
C4—C5—H5120.8O1—C11—H11117.2
C6—C5—H5120.8C7—C11—H11117.2
C8—N1—C1—C2−178.34 (12)N1—C1—C6—C7−0.32 (12)
C9—N1—C1—C2−0.3 (2)C5—C6—C7—C8178.96 (13)
C8—N1—C1—C60.77 (13)C1—C6—C7—C8−0.24 (13)
C9—N1—C1—C6178.86 (12)C5—C6—C7—C111.3 (2)
N1—C1—C2—C3178.96 (11)C1—C6—C7—C11−177.94 (13)
C6—C1—C2—C3−0.04 (18)C1—N1—C8—C7−0.95 (14)
C1—C2—C3—C40.56 (19)C9—N1—C8—C7−179.00 (12)
C2—C3—C4—C5−0.6 (2)C6—C7—C8—N10.73 (14)
C3—C4—C5—C60.0 (2)C11—C7—C8—N1178.60 (12)
C4—C5—C6—C10.47 (17)C8—N1—C9—C1011.7 (3)
C4—C5—C6—C7−178.65 (12)C1—N1—C9—C10−166.00 (16)
C2—C1—C6—C5−0.47 (17)C8—C7—C11—O1−178.09 (15)
N1—C1—C6—C5−179.66 (10)C6—C7—C11—O1−0.7 (3)
C2—C1—C6—C7178.87 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.513.390 (2)159

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2714).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gadaginamath, G. S. & Patil, S. A. (1999). Indian J. Chem. B, 38, 1070–1074.
  • Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh.18, 159–163.
  • Karthick, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2005). Acta Cryst. E61, o1780–o1782.
  • Mathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol.68, 393–402. [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem.64, 3595–3607. [PubMed]
  • Rodriguez, W. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.
  • Selvanayagam, S., Chandak, M. S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3122–o3123.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, o78–o80. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography