PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m774.
Published online 2008 May 3. doi:  10.1107/S1600536808012518
PMCID: PMC2961620

Hexa-μ2-benzoato-bis­(2,2′-bipyrid­yl)trimanganese(II) monohydrate

Abstract

The complex molecule of the title compound, [Mn3(C7H5O2)6(C10H8N2)2]·H2O, contains a linear array of divalent manganese ions. The central MnII atom, which is located on a crystallographic inversion center, is coordinated octa­hedrally by six benzoate O atoms. The two terminal MnII ions are six-coordinated by four benzoate O atoms and two N atoms of 2,2′-bipyridyl. The central MnII atom and the terminal MnII ions are bridged by four benzoate ligands in a bidentate fashion, whereas the other two carboxyl­ate ligands form bridges through one O atom only and chelate the terminal MnII atom. The mol­ecules pack together via van der Waals attractions and C—H(...)O hydrogen bonds.

Related literature

For general background, see: Mukhopadhyay et al. (2002 [triangle]) and references therein; Gatteschi et al. (2003 [triangle]) and references therein; Yao et al. (2006 [triangle]); Ma et al. (2007 [triangle]). For related literature, see: Desiraju et al. (2002 [triangle]) and references therein. For related structures, see: Ménage et al. (1991 [triangle]); Tangoulis et al. (1996 [triangle]); Fernández et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m774-scheme1.jpg

Experimental

Crystal data

  • [Mn3(C7H5O2)6(C10H8N2)2]·H2O
  • M r = 1221.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m774-efi1.jpg
  • a = 11.2312 (5) Å
  • b = 11.7544 (2) Å
  • c = 11.994 (3) Å
  • α = 72.046 (3)°
  • β = 71.094 (1)°
  • γ = 80.418 (2)°
  • V = 1421.1 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 291 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.841, T max = 0.932
  • 11367 measured reflections
  • 5553 independent reflections
  • 4007 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.138
  • S = 1.08
  • 5553 reflections
  • 382 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012518/rk2087sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012518/rk2087Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Basic Research Program of Henan Province (grant No. 072300420040) is gratefully acknowledged.

supplementary crystallographic information

Comment

The chemistry of manganese in various states and various nuclearities has received much attention since the discovery of their potential as models for the oxygen–evolving complex of photosystem II (Mukhopadhyay et al., 2002 and references therein) and as single–domain nanoscale magnetic particles (Gatteschi et al., 2003 and references therein). We have previously reported the crystal structure of manganese complexes with benzoate, phosphonate and 2,2'–bipyridyl ligands (Yao et al., 2006; Ma et al., 2007). In this paper, we report the crystal structure of a Mn3–complex with benzoate and 2,2'–bipyridyl ligands.

The structure of the title compound is composed of a linear array of trimanganese ions and a water molecule (Fig. 1). The linear complex includes a central, octahedral MnII ion [Mn1] that is located on a crystallographic inversion center. Its coordination sphere is composed of six oxygen atoms from six different benzoates. The central Mn1 ion is flanked by two octahedrally distorted MnII ion [Mn2]. For the Mn2 atom, four of its six coordination positions are occupied by the oxygen atoms O1, O2, O4 and O5 from the benzoate ligands. The remaining two positions are filled with the nitrogen atoms from the 2,2'–bipyridyl ligand. The Mn—N bond lengths are 2.259 (3)Å and 2.271 (3)Å. The Mn—O bond lengths are in the range of 2.075 (2)–2.300 (2) Å. The bond lengths and angles may be compared with the corresponding values in similar complexe of MnII: Mn3(AcO)6(bipy)2 (Ménage et al., 1991), Mn3(AcO)6(pybim)2 (Tangoulis et al., 1996) and [Mn3(µ–ClCH2COO)6(bipy)2] (Fernández et al., 2002). The Mn1 and Mn2 atoms are bridged by six benzoate ligands, four of which show the common µ2–η11 coordination mode while the other two adopt the µ3–η21 coordination mode (Scheme).

The oxidation state assignments for Mn ions as MnII are based on the following observations. The trinuclear molecules is neutral and is composed of six monoanionic benzoate donors (e.g. benzoates) and two neutral 2,2'–bipyridyl ligands. Additional support for this oxidation level is provided by the almost equal distances of the Mn—O and Mn—N bond lengths, which is typical for a d5 system (Ménage et al., 1991; Fernαndez et al., 2002).

The hydrogen–bond parameters of the title compound are listed in Table. The molecule shows C—H···O intramolecular H bond with C···O distance of 3.149 (5)Å and 3.458 (5)Å and C—H···O angle of > 115° (dashed line in Fig. 1). The distance and angle values are typical for these types of hydrogen bonds (Desiraju et al., 2002 and references therein). The title compound packed together via van der Waals attractions as well as intermolecular C9—H9···O2ii hydrogen bonds (dashed line in Fig. 2). Symmetry codes: (ii) 2-x, 2-y, 1-z.

Experimental

[Mn3O(PhCO2)6(py)2.(H2O)] (0.1079 g, 0.01 mmol) (where is py = pyridine) was dissolved in 10 ml CH3CN, to which a solution of 1,1,1–tris(hydroxymethyl)methylamine (0.0121 g, 0.01 mmol) and 2,2'–bipyridyl (0.0156 g, 0.01 mmol) in dichloromethane (10 ml) was added. After stirring at room temperature for half an hour, the solution was filtered and the filtrate was allowed to evaporate slowly in air. A small crop of the dark–brown X–ray quality crystals of the title compound was formed in several days. Anal. Calc. for C62H46Mn3N4O12.H2O (C62H48Mn3N4O13): C 60.94%, H 3.96%, N 4.59%. Found: C 60.69%, H 3.83%, N 4.68%. FT–IR (KBr pellet, cm-1): 3440 br, 3062 w, 2361 w, 1610s, 1570 s, 1492 w, 1470 w, 1446 w, 1391 s, 1173 w, 1067 w, 1025 w, 836 w, 768 w, 718 m, 674 w, 640 w, 463 w. Thermogravimetric analysis of the title compound shows one step weight loss in the temperature range 323–473 K. The total weight loss (1.8%) is slightly higher than the calculated value of 1.5% for the removal of one free water molecule.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of the water molecule were located in difference Fourier maps and included in the subsequent refinement using restraint (O—H = 0.85 (1) Å) with Uiso(H) = 1.2Ueq(O). In the last stage of refinement, it was treated as riding on the O atom. The free water molecule in the crystal lattice was treated as disorder with 50% occupation rate.

Figures

Fig. 1.
Perspective view of the title compound, with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bonds are drawn ...
Fig. 2.
The intermolecular C—H···O hydrogen bond between the molecule units. H atoms not included in the hydrogen bond were omitted for clarify. Symmetry codes: (ii) 2-x, 2-y, 1-z.

Crystal data

[Mn3(C7H5O2)6(C10H8N2)2]·H2OZ = 1
Mr = 1221.86F000 = 627
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 11.2312 (5) ÅCell parameters from 4735 reflections
b = 11.7544 (2) Åθ = 2.1–26.5º
c = 11.994 (3) ŵ = 0.73 mm1
α = 72.046 (3)ºT = 291 (2) K
β = 71.0940 (10)ºBlock, dark–brown
γ = 80.418 (2)º0.30 × 0.20 × 0.10 mm
V = 1421.1 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer5553 independent reflections
Radiation source: Sealed tube4007 reflections with I > 2σ(I)
Monochromator: GgraphiteRint = 0.036
T = 291(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −13→13
Tmin = 0.841, Tmax = 0.932k = −14→14
11367 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: FullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138  w = 1/[σ2(Fo2) + (0.07P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5553 reflectionsΔρmax = 0.29 e Å3
382 parametersΔρmin = −0.70 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7698 (3)0.7996 (3)0.3087 (3)0.0385 (8)
C20.8860 (4)0.7842 (4)0.2269 (4)0.0525 (10)
H20.95900.79440.24230.063*
C30.8943 (4)0.7532 (4)0.1208 (4)0.0589 (11)
H30.97240.74490.06440.071*
C40.7860 (4)0.7353 (4)0.1005 (4)0.0572 (10)
H40.79140.71390.03040.069*
C50.6702 (4)0.7485 (4)0.1825 (4)0.0546 (10)
H50.59800.73510.16780.066*
C60.6594 (4)0.7815 (3)0.2865 (4)0.0496 (9)
H60.58050.79160.34110.060*
C70.7607 (3)0.8311 (3)0.4229 (3)0.0369 (7)
C80.7418 (3)1.2525 (3)0.5247 (3)0.0364 (7)
C90.8542 (3)1.2741 (3)0.5377 (4)0.0454 (9)
H90.90841.20990.56410.054*
C100.8856 (4)1.3894 (4)0.5120 (4)0.0489 (9)
H100.96131.40290.51990.059*
C110.8053 (4)1.4850 (3)0.4745 (4)0.0503 (9)
H110.82511.56300.45980.060*
C120.6939 (4)1.4641 (3)0.4587 (4)0.0519 (10)
H120.64101.52840.43010.062*
C130.6621 (3)1.3488 (3)0.4851 (3)0.0401 (8)
H130.58671.33550.47630.048*
C140.7122 (3)1.1261 (3)0.5471 (3)0.0312 (6)
C150.3814 (3)0.9013 (3)0.9078 (3)0.0361 (7)
C160.4312 (4)0.8754 (3)1.0053 (3)0.0448 (8)
H160.51710.85380.99260.054*
C170.3569 (4)0.8806 (3)1.1204 (3)0.0471 (9)
H170.39200.86271.18470.056*
C180.2299 (4)0.9127 (4)1.1389 (3)0.0513 (10)
H180.17880.91671.21630.062*
C190.1785 (4)0.9388 (4)1.0444 (3)0.0513 (10)
H190.09260.96031.05760.062*
C200.2541 (3)0.9332 (3)0.9284 (3)0.0450 (8)
H200.21850.95110.86440.054*
C210.4675 (3)0.9023 (3)0.7814 (3)0.0355 (7)
C220.9965 (3)0.8848 (4)0.6997 (3)0.0449 (8)
H220.97830.96600.66640.054*
C231.1066 (4)0.8490 (4)0.7370 (4)0.0521 (9)
H231.16060.90510.72860.063*
C241.1315 (4)0.7329 (4)0.7846 (4)0.0543 (10)
H241.20290.70720.81140.065*
C251.0518 (4)0.6497 (4)0.7947 (4)0.0577 (11)
H251.07050.56820.82640.069*
C260.9434 (4)0.6893 (4)0.7568 (4)0.0491 (9)
C270.8531 (4)0.6079 (3)0.7629 (4)0.0534 (10)
C280.8616 (5)0.4857 (4)0.8167 (4)0.0660 (12)
H280.92590.45060.85220.079*
C290.7743 (4)0.4173 (4)0.8172 (4)0.0615 (12)
H290.77900.33520.85400.074*
C300.6809 (4)0.4675 (4)0.7648 (4)0.0605 (11)
H300.62160.42100.76490.073*
C310.6762 (4)0.5914 (4)0.7106 (4)0.0562 (10)
H310.61190.62730.67540.067*
Mn10.50001.00000.50000.03159 (18)
Mn20.74951 (5)0.86247 (4)0.63436 (5)0.03183 (15)
N10.9164 (3)0.8058 (3)0.7104 (3)0.0423 (7)
N20.7615 (3)0.6596 (3)0.7081 (3)0.0508 (8)
O10.6536 (2)0.8502 (2)0.4961 (2)0.0391 (5)
O20.8604 (2)0.8344 (2)0.4472 (2)0.0439 (6)
O30.6136 (2)1.1124 (2)0.5272 (2)0.0458 (6)
O40.7876 (2)1.0433 (2)0.5852 (2)0.0423 (6)
O50.5826 (2)0.8747 (2)0.7718 (2)0.0441 (6)
O60.4186 (2)0.9293 (2)0.6956 (2)0.0419 (6)
O1W0.4239 (7)0.4880 (6)0.9786 (6)0.0601 (16)0.50
H1A0.477 (11)0.463 (9)1.019 (11)0.072*0.50
H1B0.369 (10)0.538 (9)1.009 (9)0.072*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0372 (17)0.0400 (18)0.0360 (18)0.0098 (15)−0.0094 (14)−0.0151 (15)
C20.049 (2)0.050 (2)0.046 (2)0.0097 (18)−0.0083 (17)−0.0080 (18)
C30.058 (3)0.064 (3)0.048 (2)0.016 (2)−0.015 (2)−0.018 (2)
C40.057 (2)0.052 (2)0.055 (2)0.0120 (19)−0.015 (2)−0.013 (2)
C50.058 (2)0.051 (2)0.053 (2)0.0051 (19)−0.015 (2)−0.0171 (19)
C60.051 (2)0.050 (2)0.050 (2)−0.0006 (18)−0.0131 (18)−0.0185 (18)
C70.0314 (17)0.0371 (17)0.0416 (18)0.0034 (13)−0.0111 (14)−0.0123 (15)
C80.0300 (16)0.0370 (17)0.0381 (17)−0.0062 (14)−0.0056 (13)−0.0073 (14)
C90.0373 (19)0.043 (2)0.057 (2)−0.0079 (16)−0.0130 (17)−0.0125 (17)
C100.051 (2)0.052 (2)0.053 (2)−0.0175 (18)−0.0137 (18)−0.0209 (18)
C110.058 (2)0.037 (2)0.058 (2)−0.0135 (18)−0.0113 (19)−0.0169 (17)
C120.053 (2)0.037 (2)0.054 (2)0.0064 (18)−0.0139 (19)−0.0031 (17)
C130.045 (2)0.0393 (18)0.0344 (18)−0.0028 (15)−0.0203 (15)0.0019 (14)
C140.0278 (15)0.0362 (16)0.0293 (16)−0.0020 (13)−0.0063 (12)−0.0109 (13)
C150.0365 (18)0.0329 (16)0.0335 (16)−0.0069 (14)−0.0056 (13)−0.0040 (13)
C160.046 (2)0.051 (2)0.0355 (18)0.0003 (17)−0.0087 (16)−0.0147 (16)
C170.057 (2)0.051 (2)0.0338 (18)−0.0042 (18)−0.0148 (17)−0.0104 (16)
C180.057 (2)0.052 (2)0.0324 (19)0.0003 (19)0.0024 (17)−0.0137 (17)
C190.046 (2)0.055 (2)0.038 (2)0.0038 (18)−0.0014 (16)−0.0083 (17)
C200.0410 (19)0.054 (2)0.0337 (19)−0.0038 (16)−0.0095 (15)−0.0038 (16)
C210.0381 (18)0.0377 (17)0.0316 (17)−0.0053 (14)−0.0087 (14)−0.0109 (13)
C220.0337 (18)0.058 (2)0.045 (2)−0.0045 (16)−0.0126 (16)−0.0150 (18)
C230.044 (2)0.055 (2)0.055 (2)−0.0048 (18)−0.0130 (18)−0.0110 (19)
C240.049 (2)0.055 (2)0.051 (2)0.0158 (19)−0.0130 (18)−0.0155 (19)
C250.050 (2)0.056 (2)0.052 (2)0.014 (2)−0.0111 (19)−0.0068 (19)
C260.046 (2)0.055 (2)0.043 (2)0.0117 (18)−0.0175 (17)−0.0133 (18)
C270.053 (2)0.038 (2)0.057 (2)0.0160 (18)−0.0121 (19)−0.0095 (18)
C280.066 (3)0.048 (2)0.069 (3)−0.004 (2)−0.023 (2)0.007 (2)
C290.061 (3)0.049 (2)0.059 (3)−0.011 (2)−0.020 (2)0.013 (2)
C300.052 (2)0.051 (2)0.067 (3)−0.017 (2)−0.018 (2)0.006 (2)
C310.059 (3)0.054 (2)0.056 (3)−0.014 (2)−0.026 (2)−0.002 (2)
Mn10.0309 (4)0.0296 (4)0.0336 (4)−0.0016 (3)−0.0084 (3)−0.0091 (3)
Mn20.0282 (3)0.0330 (3)0.0353 (3)0.00136 (19)−0.0123 (2)−0.0091 (2)
N10.0362 (16)0.0501 (18)0.0422 (16)0.0069 (13)−0.0157 (13)−0.0155 (14)
N20.0525 (19)0.0386 (17)0.057 (2)−0.0001 (15)−0.0145 (16)−0.0105 (15)
O10.0311 (12)0.0478 (14)0.0392 (13)0.0059 (10)−0.0112 (10)−0.0167 (11)
O20.0318 (12)0.0555 (15)0.0466 (14)0.0069 (11)−0.0138 (11)−0.0200 (12)
O30.0367 (13)0.0517 (15)0.0519 (15)−0.0090 (11)−0.0094 (11)−0.0190 (12)
O40.0375 (13)0.0357 (13)0.0546 (16)−0.0019 (10)−0.0179 (12)−0.0095 (11)
O50.0388 (14)0.0503 (15)0.0379 (13)0.0044 (11)−0.0074 (10)−0.0124 (11)
O60.0432 (13)0.0556 (15)0.0260 (12)−0.0107 (11)−0.0074 (10)−0.0091 (11)
O1W0.060 (4)0.049 (3)0.064 (4)−0.005 (3)−0.009 (3)−0.015 (3)

Geometric parameters (Å, °)

C1—C21.378 (5)C19—H190.9300
C1—C61.411 (5)C20—H200.9300
C1—C71.494 (5)C21—O61.251 (4)
C2—C31.400 (6)C21—O51.256 (4)
C2—H20.9300C22—N11.348 (5)
C3—C41.375 (6)C22—C231.406 (5)
C3—H30.9300C22—H220.9300
C4—C51.372 (6)C23—C241.327 (6)
C4—H40.9300C23—H230.9300
C5—C61.380 (6)C24—C251.386 (6)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—C261.395 (6)
C7—O21.254 (4)C25—H250.9300
C7—O11.271 (4)C26—N11.334 (5)
C7—Mn22.634 (4)C26—C271.478 (6)
C8—C131.384 (5)C27—N21.358 (5)
C8—C91.394 (5)C27—C281.382 (6)
C8—C141.499 (5)C28—C291.365 (7)
C9—C101.374 (5)C28—H280.9300
C9—H90.9300C29—C301.355 (6)
C10—C111.375 (6)C29—H290.9300
C10—H100.9300C30—C311.400 (6)
C11—C121.396 (6)C30—H300.9300
C11—H110.9300C31—N21.334 (5)
C12—C131.374 (5)C31—H310.9300
C12—H120.9300Mn1—O3i2.139 (2)
C13—H130.9300Mn1—O32.139 (2)
C14—O31.251 (4)Mn1—O6i2.166 (2)
C14—O41.254 (4)Mn1—O62.166 (2)
C15—C201.377 (5)Mn1—O12.251 (2)
C15—C161.385 (5)Mn1—O1i2.251 (2)
C15—C211.509 (5)Mn2—O52.075 (2)
C16—C171.377 (5)Mn2—O42.101 (2)
C16—H160.9300Mn2—N12.259 (3)
C17—C181.376 (6)Mn2—N22.271 (3)
C17—H170.9300Mn2—O22.282 (3)
C18—C191.366 (6)Mn2—O12.300 (2)
C18—H180.9300O1W—H1A0.85 (13)
C19—C201.390 (5)O1W—H1B0.85 (10)
C2—C1—C6119.8 (3)C25—C24—H24119.7
C2—C1—C7120.3 (3)C24—C25—C26119.3 (4)
C6—C1—C7119.9 (3)C24—C25—H25120.4
C1—C2—C3120.1 (4)C26—C25—H25120.4
C1—C2—H2120.0N1—C26—C25120.8 (4)
C3—C2—H2120.0N1—C26—C27115.7 (3)
C4—C3—C2119.5 (4)C25—C26—C27123.5 (4)
C4—C3—H3120.2N2—C27—C28120.9 (4)
C2—C3—H3120.2N2—C27—C26115.9 (3)
C5—C4—C3120.7 (4)C28—C27—C26123.2 (4)
C5—C4—H4119.6C29—C28—C27119.2 (4)
C3—C4—H4119.6C29—C28—H28120.4
C4—C5—C6120.8 (4)C27—C28—H28120.4
C4—C5—H5119.6C30—C29—C28120.8 (4)
C6—C5—H5119.6C30—C29—H29119.6
C5—C6—C1119.0 (4)C28—C29—H29119.6
C5—C6—H6120.5C29—C30—C31118.2 (4)
C1—C6—H6120.5C29—C30—H30120.9
O2—C7—O1120.7 (3)C31—C30—H30120.9
O2—C7—C1118.8 (3)N2—C31—C30121.8 (4)
O1—C7—C1120.5 (3)N2—C31—H31119.1
O2—C7—Mn260.01 (18)C30—C31—H31119.1
O1—C7—Mn260.82 (17)O3i—Mn1—O3180.0
C1—C7—Mn2174.0 (2)O3i—Mn1—O6i91.63 (10)
C13—C8—C9119.1 (3)O3—Mn1—O6i88.37 (10)
C13—C8—C14121.0 (3)O3i—Mn1—O688.37 (10)
C9—C8—C14119.8 (3)O3—Mn1—O691.63 (10)
C10—C9—C8120.6 (4)O6i—Mn1—O6180.000 (1)
C10—C9—H9119.7O3i—Mn1—O187.97 (9)
C8—C9—H9119.7O3—Mn1—O192.03 (9)
C9—C10—C11120.2 (4)O6i—Mn1—O188.49 (9)
C9—C10—H10119.9O6—Mn1—O191.51 (9)
C11—C10—H10119.9O3i—Mn1—O1i92.03 (9)
C10—C11—C12119.6 (3)O3—Mn1—O1i87.97 (9)
C10—C11—H11120.2O6i—Mn1—O1i91.51 (9)
C12—C11—H11120.2O6—Mn1—O1i88.49 (9)
C13—C12—C11120.3 (3)O1—Mn1—O1i180.000 (1)
C13—C12—H12119.9O5—Mn2—O496.34 (10)
C11—C12—H12119.9O5—Mn2—N1111.32 (11)
C12—C13—C8120.3 (3)O4—Mn2—N190.61 (11)
C12—C13—H13119.9O5—Mn2—N290.34 (11)
C8—C13—H13119.9O4—Mn2—N2162.30 (11)
O3—C14—O4125.6 (3)N1—Mn2—N271.69 (12)
O3—C14—C8116.9 (3)O5—Mn2—O2152.16 (10)
O4—C14—C8117.5 (3)O4—Mn2—O294.63 (10)
C20—C15—C16118.3 (3)N1—Mn2—O294.03 (10)
C20—C15—C21121.6 (3)N2—Mn2—O286.83 (11)
C16—C15—C21120.0 (3)O5—Mn2—O195.16 (9)
C17—C16—C15121.7 (4)O4—Mn2—O1105.17 (9)
C17—C16—H16119.2N1—Mn2—O1147.59 (9)
C15—C16—H16119.2N2—Mn2—O190.47 (11)
C18—C17—C16119.1 (4)O2—Mn2—O157.22 (8)
C18—C17—H17120.4O5—Mn2—C7123.82 (10)
C16—C17—H17120.4O4—Mn2—C7102.37 (11)
C19—C18—C17120.3 (4)N1—Mn2—C7120.78 (10)
C19—C18—H18119.8N2—Mn2—C787.25 (12)
C17—C18—H18119.8O2—Mn2—C728.41 (9)
C18—C19—C20120.3 (4)O1—Mn2—C728.86 (9)
C18—C19—H19119.8C26—N1—C22118.7 (3)
C20—C19—H19119.8C26—N1—Mn2118.9 (3)
C15—C20—C19120.3 (4)C22—N1—Mn2122.1 (2)
C15—C20—H20119.9C31—N2—C27119.1 (4)
C19—C20—H20119.9C31—N2—Mn2123.1 (3)
O6—C21—O5125.6 (3)C27—N2—Mn2117.4 (3)
O6—C21—C15117.7 (3)C7—O1—Mn1136.2 (2)
O5—C21—C15116.7 (3)C7—O1—Mn290.3 (2)
N1—C22—C23122.5 (4)Mn1—O1—Mn2104.10 (9)
N1—C22—H22118.8C7—O2—Mn291.6 (2)
C23—C22—H22118.8C14—O3—Mn1149.7 (2)
C24—C23—C22118.2 (4)C14—O4—Mn2121.3 (2)
C24—C23—H23120.9C21—O5—Mn2138.0 (2)
C22—C23—H23120.9C21—O6—Mn1130.7 (2)
C23—C24—C25120.5 (4)H1A—O1W—H1B109 (10)
C23—C24—H24119.7

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.563.458 (5)161
C9—H9···O2ii0.932.533.287 (5)139
C22—H22···O40.932.553.149 (5)122

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2087).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (2002). Acc. Chem. Res.35, 565–573. [PubMed]
  • Fernández, G., Corbella, M., Mahía, J. & Maestro, M. A. (2002). Eur. J. Inorg. Chem. pp. 2502–2510.
  • Gatteschi, D. & Sessoli, R. (2003). Angew. Chem. Int. Ed.42, 268–197. [PubMed]
  • Ma, Y.-S., Yao, H.-C., Hua, W.-J., Li, S.-H., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chim. Acta, 360, 1645–1650.
  • Ménage, S., Vitols, S. E., Bergerat, P., Codjovi, E., Kahn, O., Girerd, J.-J., Guillot, M., Solans, X. & Calvet, T. (1991). Inorg. Chem.30, 2666–2671.
  • Mukhopadhyay, S., Staples, R. J. & Armstrong, W. A. (2002). Chem. Commun. pp. 864–865. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tangoulis, V., Malamatari, D. A., Soulti, K., Stergiou, V., Raptopoulou, C. P., Terzis, A., Kabanos, T. A. & Kessissoglou, D. P. (1996). Inorg. Chem.35, 4974–4983. [PubMed]
  • Yao, H.-C., Li, Y.-Z., Song, Y., Ma, Y.-S., Zheng, L.-M. & Xin, X.-Q. (2006). Inorg. Chem.45, 59–65. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography