PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m749–m750.
Published online 2008 May 3. doi:  10.1107/S1600536808012129
PMCID: PMC2961614

Bis(2-bromo­pyridinium) hexa­bromido­stannate(IV)

Abstract

The asymmetric unit of the title compound, (C5H5BrN)2[SnBr6], contains one cation and one half-anion. The [SnBr6]2− anion is located on an inversion center and forms a quasi-regular octa­hedral arrangement. The crystal structure consists of two-dimensional supra­molecular layers assembled via hydrogen-bonding inter­actions of N—H(...)Br—Sn [D(...)A = 3.375 (13)–3.562 (13) Å and D—H(...)A = 127–142°, along with C—Br(...)Br synthons [3.667 (2) and 3.778 (3) Å]. These layers are parallel to the bc plane and built up from anions inter­acting extensively with the six surrounding cations.

Related literature

The title salt is isomorphous with the Te analogue (Fernandes et al., 2004 [triangle]). For related literature, see: Al-Far & Ali (2007 [triangle]); Ali, Al-Far & Al-Sou’od (2007 [triangle]); Ali & Al-Far (2007 [triangle]); Ali, Al-Far & Ng (2007 [triangle]); Allen et al. (1987 [triangle]); Aruta et al. (2005 [triangle]); Hill (1998 [triangle]); Kagan et al. (1999 [triangle]); Knutson et al. (2005 [triangle]); Raptopoulou et al. (2002 [triangle]); Tudela & Khan (1991 [triangle]); Willey et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m749-scheme1.jpg

Experimental

Crystal data

  • (C5H5BrN)2[SnBr6]
  • M r = 916.12
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m749-efi1.jpg
  • a = 7.4037 (15) Å
  • b = 8.3393 (17) Å
  • c = 9.4302 (19) Å
  • α = 73.14 (3)°
  • β = 67.98 (3)°
  • γ = 82.44 (3)°
  • V = 516.4 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 16.71 mm−1
  • T = 293 (2) K
  • 0.16 × 0.13 × 0.08 mm

Data collection

  • Bruker–Siemens SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.058, T max = 0.261
  • 2266 measured reflections
  • 1807 independent reflections
  • 1308 reflections with I > 2σ(I)
  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.178
  • S = 1.02
  • 1807 reflections
  • 67 parameters
  • H-atom parameters constrained
  • Δρmax = 3.31 e Å−3
  • Δρmin = −1.87 e Å−3

Data collection: SMART (Bruker, 2006 [triangle]); cell refinement: SAINT-Plus (Bruker, 2006 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012129/bx2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012129/bx2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Al al-Bayt University and Al-Balqa’a Applied University are thanked for supporting this work

supplementary crystallographic information

Comment

Noncovalent interactions play an important role in organizing structural units in both natural and artificial systems. Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan et al., 1999; Raptopoulou et al., 2002). Tin metal-halo based hybrids are of particular interest as being materials with interesting optical and magnetic properties (Aruta et al., 2005; Knutson et al., 2005; Kagan et al., 1999). We are currently carrying out studies about lattice including different types of intermolecular interactions (aryl···aryl, X···X, X···aryl and X···H). Within our research of hybrid compounds containing tin metal (Al-Far & Ali 2007; Ali, Al-Far & Al-Sou'od, 2007; Ali & Al-Far, 2007; Ali, Al-Far & Ng, 2007), the crystal structure of the title salt, (I), has been investigated.

The asymmetric unit of (I) contains one cation and one-half anion (Fig. 1). The whole (2-Br—C5H5N)2[SnBr6] geometry is generated through an inversion center with tin being lying on the special crystallographic position of (1/2, 1/2, 0). The (SnBr6)2- anion forms a quasi-octahedral geometry (Table 1), with the Sn—Br bond lengths are almost invariant. These lengths are in accordance with tin-bromide distances reported for (SnBr6)2- anion containing compounds (Willey et al.,1998; Tudela & Khan 1991; Al-Far & Ali 2007; Ali, Al-Far & Al-Sou'od, 2007; Ali & Al-Far, 2007; Ali, Al-Far & Ng, 2007). Bond lengths and angles within the cation are as expected (Allen et al., 1987).

The packing of the structure (Fig. 2) can be described as layers of alternating anions and cations parallel to bc plane. In these layers each (SnBr6)2- anion is interacting with six cations via two N—H···Br interactions (Table 2) and the symmetry related ones along with two Br···Br interactions and symmetry related ones [Br2···Br4and Br2···Br1of 3.6666 (23) and 3.7779 (29) Å, respectively; Fig. 2].

The N—H···N interactions along with C—Br···Br synthons are potential building blocks for this stable supramolecular lattice. The stability of this lattice is evident in the isostructurality with the reported Te analogue (Fernandes et al., 2004).

Experimental

Warm solution of Sn metal (1.0 mmol) dissolved in absolute ethanol (10 ml) and HBr (60%, 5 ml), was added dropwise to a stirred hot solution of 2-bromopyridine (2 mmol) dissolved in ethanol (10 ml). The mixture was then treated with liquid Br2 (2 ml) and refluxed for 3/2 h. The resulting mixture was then filtered off, and allowed to stand undisturbed at room temperature. The salt crystallized over 1 d as nice yellow block crystals (yield: 83%).

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
A view of the asymmetric unit of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds (dashed lines) and Br···Br interactions (thick dashed lines) are shown for (SnBr6)2- anions and six surrounding cations.

Crystal data

(C5H5BrN)2[SnBr6]Z = 1
Mr = 916.12F000 = 414
Triclinic, P1Dx = 2.946 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.4037 (15) ÅCell parameters from 255 reflections
b = 8.3393 (17) Åθ = 2.1–27.7º
c = 9.4302 (19) ŵ = 16.71 mm1
α = 73.14 (3)ºT = 293 (2) K
β = 67.98 (3)ºBlock, yellow
γ = 82.44 (3)º0.16 × 0.13 × 0.08 mm
V = 516.4 (2) Å3

Data collection

Bruker–Siemens SMART APEX diffractometer1807 independent reflections
Radiation source: fine-focus sealed tube1308 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.091
Detector resolution: 8.3 pixels mm-1θmax = 25.0º
T = 293(2) Kθmin = 2.4º
ω scansh = −1→8
Absorption correction: multi-scan(SADABS; Bruker, 2007)k = −9→9
Tmin = 0.058, Tmax = 0.261l = −10→11
2266 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.178  w = 1/[σ2(Fo2) + (0.1076P)2 + 1.002P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1807 reflectionsΔρmax = 3.31 e Å3
67 parametersΔρmin = −1.87 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.50000.50000.00000.0271 (4)
Br40.80819 (19)0.51691 (17)−0.25738 (17)0.0365 (4)
Br30.5601 (2)0.17999 (16)0.09614 (18)0.0394 (4)
Br10.2879 (2)0.43877 (19)−0.14375 (19)0.0426 (4)
Br20.6761 (3)0.2489 (2)−0.4484 (2)0.0674 (6)
C20.7936 (19)0.1051 (18)−0.5793 (18)0.038 (3)*
N10.9316 (17)0.1687 (17)−0.7225 (17)0.049 (3)*
H10.95750.2732−0.74990.059*
C30.751 (2)−0.0578 (18)−0.5321 (19)0.042 (3)*
H30.6604−0.1039−0.43240.051*
C40.845 (2)−0.155 (2)−0.6371 (19)0.047 (4)*
H40.8119−0.2665−0.60940.057*
C50.990 (2)−0.090 (2)−0.784 (2)0.051 (4)*
H51.0572−0.1560−0.85260.061*
C61.028 (3)0.077 (2)−0.822 (2)0.060 (5)*
H61.12250.1254−0.91830.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0304 (6)0.0249 (6)0.0213 (7)0.0021 (5)−0.0058 (5)−0.0048 (5)
Br40.0387 (7)0.0322 (7)0.0294 (8)−0.0003 (5)−0.0011 (6)−0.0094 (6)
Br30.0462 (8)0.0258 (7)0.0340 (9)0.0066 (6)−0.0067 (6)−0.0034 (6)
Br10.0491 (8)0.0446 (8)0.0391 (9)−0.0002 (6)−0.0226 (7)−0.0094 (7)
Br20.1089 (15)0.0522 (10)0.0491 (11)0.0059 (10)−0.0295 (11)−0.0268 (9)

Geometric parameters (Å, °)

Sn1—Br32.5939 (15)N1—C61.32 (2)
Sn1—Br3i2.5939 (15)N1—H10.8600
Sn1—Br12.6027 (15)C3—C41.39 (2)
Sn1—Br1i2.6027 (15)C3—H30.9300
Sn1—Br4i2.6174 (17)C4—C51.40 (2)
Sn1—Br42.6174 (17)C4—H40.9300
Br2—C21.870 (15)C5—C61.37 (2)
C2—C31.34 (2)C5—H50.9300
C2—N11.357 (19)C6—H60.9300
Br3—Sn1—Br3i180.0N1—C2—Br2117.9 (11)
Br3—Sn1—Br189.06 (5)C6—N1—C2122.7 (14)
Br3i—Sn1—Br190.94 (5)C6—N1—H1118.6
Br3—Sn1—Br1i90.94 (5)C2—N1—H1118.6
Br3i—Sn1—Br1i89.06 (5)C2—C3—C4117.8 (15)
Br1—Sn1—Br1i180.00 (5)C2—C3—H3121.1
Br3—Sn1—Br4i89.43 (6)C4—C3—H3121.1
Br3i—Sn1—Br4i90.57 (6)C3—C4—C5121.7 (15)
Br1—Sn1—Br4i90.21 (5)C3—C4—H4119.1
Br1i—Sn1—Br4i89.79 (5)C5—C4—H4119.1
Br3—Sn1—Br490.57 (6)C6—C5—C4116.8 (17)
Br3i—Sn1—Br489.43 (6)C6—C5—H5121.6
Br1—Sn1—Br489.79 (5)C4—C5—H5121.6
Br1i—Sn1—Br490.21 (5)N1—C6—C5120.6 (17)
Br4i—Sn1—Br4180.0N1—C6—H6119.7
C3—C2—N1120.3 (15)C5—C6—H6119.7
C3—C2—Br2121.8 (12)
C3—C2—N1—C61(2)C2—C3—C4—C54(2)
Br2—C2—N1—C6177.7 (12)C3—C4—C5—C6−3(2)
N1—C2—C3—C4−3(2)C2—N1—C6—C51(3)
Br2—C2—C3—C4−179.9 (11)C4—C5—C6—N10(3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Br4ii0.862.653.375 (13)142
N1—H1···Br1iii0.862.983.562 (13)127

Symmetry codes: (ii) −x+2, −y+1, −z−1; (iii) −x+1, −y+1, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2139).

References

  • Al-Far, R. & Ali, B. F. (2007). Acta Cryst. C63, m137–m139. [PubMed]
  • Ali, B. F. & Al-Far, R. (2007). Acta Cryst. E63, m892–m894.
  • Ali, B. F., Al-Far, R. & Al-Sou’od, K. (2007). J. Chem. Crystallogr.37, 265–273.
  • Ali, B. F., Al-Far, R. & Ng, S. W. (2007). Acta Cryst. E63, m2102–m2103.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963–968.
  • Bruker (2006). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Fernandes, R. M. Jr, de Oliveira, G. M., Lang, E. S. & Vázquez-López, E. M. (2004). Z. Anorg. Allg. Chem.630, 2687–2691.
  • Hill, C. L. (1998). Chem. Rev.98, 1–2. [PubMed]
  • Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. [PubMed]
  • Knutson, J. L., Martin, J. D. & Mitzi, D. B. (2005). Inorg. Chem.44, 4699–4705. [PubMed]
  • Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645–650.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003–1006.
  • Willey, G. R., Woodman, T. J., Somasundaram, U., Aris, D. R. & Errington, W. (1998). J. Chem. Soc. Dalton Trans. pp. 2573–2576.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography