PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1175–o1176.
Published online 2008 May 30. doi:  10.1107/S160053680801550X
PMCID: PMC2961612

Cytenamide acetic acid solvate

Abstract

In the crystal structure of the title compound (systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide ethanoic acid solvate), C16H13NO·C2H4O2, the cytenamide and solvent mol­ecules form a hydrogen-bonded R 2 2(8) dimer motif, which is further connected to form a centrosymmetric double ring motif arrangement. The cycloheptene ring adopts a boat conformation and the dihedral angle between the least-squares planes through the two aromatic rings is 54.7 (2)°.

Related literature

For details on experimental methods used to obtain this form, see: Davis et al. (1964 [triangle]); Florence et al. (2003 [triangle]); Florence, Johnston, Fernandes et al. (2006 [triangle]). For related literature on related mol­ecules, see: Cyr et al. (1987 [triangle]); Fleischman et al. (2003 [triangle]); Florence, Johnston, Price et al. (2006 [triangle]); Florence, Leech et al. (2006 [triangle]); Bandoli et al. (1992 [triangle]); Harrison et al. (2006 [triangle]); Leech et al. (2007 [triangle]); Florence et al. (2008 [triangle]) and Johnston et al. (2006 [triangle]). For other related literature, see: Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1175-scheme1.jpg

Experimental

Crystal data

  • C16H13NO·C2H4O2
  • M r = 295.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1175-efi3.jpg
  • a = 5.8726 (17) Å
  • b = 14.418 (3) Å
  • c = 18.182 (4) Å
  • β = 95.13 (2)°
  • V = 1533.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 160 K
  • 0.44 × 0.09 × 0.06 mm

Data collection

  • Oxford Diffraction Gemini diffractometer
  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2007 [triangle]) T min = 0.84, T max = 0.99
  • 16235 measured reflections
  • 2759 independent reflections
  • 2025 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.089
  • wR(F 2) = 0.148
  • S = 1.08
  • 2759 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801550X/om2234sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801550X/om2234Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk).

supplementary crystallographic information

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-acetic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006a) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006b; Florence, Leech et al., 2006) and its closely related analogues: CYT, 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated acetic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The reported crystal structure is essentially iso-structural with that of CBZ-acetic acid (1/1) (Fleischman et al., 2003) and DHC-acetic acid (1/1) (Johnston et al., 2006). Accordingly, it displays the same space group with very similar unit-cell parameters and packing arrangements [CBZ:acetic a = 5.121 (4) Å, b = 15.714 (13) Å, c = 18.499 (15) Å, β = 95.65 (1)°; DHC:acetic a = 5.3104 (4) Å, b = 15.424 (17) Å, c = 18.7329 (2) Å, β = 95.65 (1)°]. Specifically, the CYT and acetic acid molecules are connected via O—H···O and N—H···O hydrogen bonds (contacts 1 and 2) to form an R22(8) (Etter, 1990) dimer motif. A third hydrogen bond, N1—H1···O2, joins adjacent dimers forming a centrosymmetric double motif arrangement (Fig. 2).

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-acetic acid was grown form a saturated acetic acid solution by isothermal solvent evaporation at 278 K.

Refinement

All non-H atoms were refined anisotropically. H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (bond lengths to accepted values, i.e. C—H in the range 0.93–98, N—H = 0,86 and O—H = 0.82 Å with esd's of 0.02 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were treated with the riding model. Atoms C12, C13, C14 and, to some extent C15, suffer from large and prolate thermal ellipsoids. Given the rigidity of the molecule and well behaved thermal parameters of the remainder atoms, we exclude the possibility of disorder or incorrect treatment of absorption effects. Investigation of diffraction frames indicated significant splitting of some low-order reflections and this is likely to be the principal cause of the anomalous thermal parameters and of high R-factor obtained.

Figures

Fig. 1.
The molecular structure of CYT acetic acid (1/1), showing 50% probablility displacement ellipsoids.
Fig. 2.
The hydrogen bonded R22(8) motifs of CYT-acetic acid joined in a centrosymmetric arrangement via an R42(8) motif. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H13NO·C2H4O2F000 = 624
Mr = 295.34Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3006 reflections
a = 5.8726 (17) Åθ = 3–26º
b = 14.418 (3) ŵ = 0.09 mm1
c = 18.182 (4) ÅT = 160 K
β = 95.13 (2)ºNeedle, colourless
V = 1533.3 (6) Å30.44 × 0.09 × 0.06 mm
Z = 4

Data collection

Oxford Diffraction Gemini diffractometer2759 independent reflections
Monochromator: graphite2025 reflections with I > 2σ(I)
Detector resolution: 15.9745 pixels mm-1Rint = 0.065
T = 160 Kθmax = 25.2º
ω scansθmin = 2.7º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −7→7
Tmin = 0.84, Tmax = 0.99k = −17→17
16235 measured reflectionsl = −21→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.089  Method = Modified Sheldrick w = 1/[σ2(F2) + 3.15P], where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.0002
S = 1.08Δρmax = 0.43 e Å3
2759 reflectionsΔρmin = −0.37 e Å3
199 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8743 (7)0.1556 (2)0.5586 (2)0.0377
C21.0683 (7)0.2065 (3)0.52488 (19)0.0394
H21.20720.17090.53950.0464*
C31.0494 (7)0.2106 (2)0.4415 (2)0.0359
H30.36430.61940.82620.0919*
C41.2134 (7)0.1675 (3)0.4031 (2)0.0434
H41.33620.13550.42910.0517*
C51.2009 (8)0.1694 (3)0.3270 (2)0.0489
H51.31550.14170.30230.0588*
C61.0206 (8)0.2134 (3)0.2876 (2)0.0492
H61.01150.21460.23610.0589*
C70.8543 (8)0.2557 (3)0.3251 (2)0.0479
H70.72870.28340.29800.0554*
C80.8695 (7)0.2579 (2)0.4025 (2)0.0391
C90.7017 (8)0.3120 (3)0.4383 (2)0.0500
H90.55400.31380.41400.0595*
C100.7341 (8)0.3609 (3)0.5012 (2)0.0548
H100.60620.39330.51490.0651*
C110.9405 (9)0.3695 (3)0.5504 (2)0.0537
C120.9797 (11)0.4529 (3)0.5910 (3)0.0745
H120.87010.49890.58670.0940*
C131.1748 (15)0.4673 (4)0.6361 (3)0.1040
H131.19570.52300.66180.1120*
C141.3377 (12)0.3999 (5)0.6437 (3)0.0924
H141.47160.40960.67450.1038*
C151.3053 (9)0.3160 (3)0.6066 (2)0.0620
H151.41960.27000.61210.0709*
C161.1082 (8)0.3006 (3)0.5609 (2)0.0448
C170.6177 (7)0.5488 (3)0.8287 (2)0.0425
C180.8000 (7)0.5266 (3)0.7809 (2)0.0554
H18a0.91630.57300.78540.0834*
H18b0.87130.46980.79650.0835*
H18c0.74320.52180.73030.0833*
O10.8339 (5)0.17284 (18)0.62261 (13)0.0490
O20.6154 (5)0.52248 (18)0.89214 (14)0.0484
O30.4556 (5)0.6020 (2)0.79594 (15)0.0614
N10.7638 (6)0.0891 (2)0.51942 (16)0.0425
H1N0.78700.08130.47270.0503*
H2N0.66690.05460.54190.0502*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.051 (3)0.0295 (19)0.030 (2)−0.0027 (18)−0.0055 (18)0.0048 (16)
C20.046 (2)0.038 (2)0.032 (2)−0.0007 (18)−0.0058 (18)0.0005 (17)
C30.049 (2)0.0252 (18)0.033 (2)−0.0068 (17)0.0016 (18)0.0008 (16)
C40.056 (3)0.038 (2)0.036 (2)−0.0023 (19)−0.001 (2)−0.0003 (18)
C50.061 (3)0.045 (2)0.041 (2)−0.002 (2)0.009 (2)−0.008 (2)
C60.075 (3)0.044 (2)0.028 (2)−0.004 (2)0.002 (2)0.0015 (18)
C70.064 (3)0.040 (2)0.038 (2)−0.002 (2)−0.008 (2)0.0106 (19)
C80.052 (3)0.030 (2)0.035 (2)−0.0051 (18)0.0013 (19)0.0049 (16)
C90.062 (3)0.038 (2)0.050 (3)0.004 (2)0.006 (2)0.013 (2)
C100.079 (3)0.030 (2)0.059 (3)0.008 (2)0.029 (3)0.012 (2)
C110.090 (4)0.038 (2)0.036 (2)−0.014 (2)0.019 (2)0.0013 (19)
C120.141 (5)0.041 (3)0.049 (3)−0.023 (3)0.046 (3)−0.005 (2)
C130.207 (9)0.063 (4)0.049 (3)−0.076 (5)0.053 (5)−0.028 (3)
C140.138 (6)0.100 (5)0.042 (3)−0.083 (5)0.027 (3)−0.023 (3)
C150.082 (4)0.072 (3)0.032 (2)−0.036 (3)0.007 (2)−0.009 (2)
C160.066 (3)0.040 (2)0.029 (2)−0.017 (2)0.006 (2)0.0005 (17)
C170.054 (3)0.034 (2)0.038 (2)0.0012 (19)−0.007 (2)−0.0052 (18)
C180.062 (3)0.055 (3)0.048 (3)0.004 (2)0.000 (2)−0.010 (2)
O10.073 (2)0.0466 (16)0.0272 (15)−0.0191 (15)0.0036 (14)−0.0021 (12)
O20.064 (2)0.0436 (16)0.0359 (16)0.0114 (14)−0.0044 (14)0.0061 (13)
O30.082 (2)0.067 (2)0.0351 (16)0.0330 (18)0.0035 (15)0.0077 (14)
N10.064 (2)0.0351 (18)0.0269 (17)−0.0113 (16)−0.0012 (16)0.0012 (14)

Geometric parameters (Å, °)

O1—C11.234 (4)C11—C121.419 (6)
O2—C171.216 (5)C12—C131.364 (10)
O3—C171.322 (5)C13—C141.362 (10)
O3—H30.8400C14—C151.390 (8)
N1—C11.329 (5)C15—C161.381 (6)
N1—H1N0.8800C2—H20.9800
N1—H2N0.8800C4—H40.9500
C1—C21.529 (6)C5—H50.9300
C2—C161.516 (6)C6—H60.9300
C2—C31.511 (5)C7—H70.9400
C3—C81.397 (5)C9—H90.9400
C3—C41.386 (6)C10—H100.9400
C4—C51.379 (5)C12—H120.9200
C5—C61.379 (6)C13—H130.9300
C6—C71.382 (6)C14—H140.9300
C7—C81.403 (5)C15—H150.9400
C8—C91.455 (6)C17—C181.473 (6)
C9—C101.343 (5)C18—H18A0.9500
C10—C111.446 (6)C18—H18B0.9500
C11—C161.400 (7)C18—H18C0.9500
C17—O3—H3111.00C1—C2—H2106.00
H1N—N1—H2N122.00C16—C2—H2105.00
C1—N1—H1N120.00C3—C2—H2106.00
C1—N1—H2N118.00C3—C4—H4120.00
N1—C1—C2118.5 (3)C5—C4—H4119.00
O1—C1—N1121.7 (3)C6—C5—H5120.00
O1—C1—C2119.7 (3)C4—C5—H5120.00
C1—C2—C3115.5 (3)C5—C6—H6120.00
C3—C2—C16113.2 (3)C7—C6—H6120.00
C1—C2—C16110.4 (3)C6—C7—H7119.00
C4—C3—C8119.4 (3)C8—C7—H7120.00
C2—C3—C4119.7 (3)C10—C9—H9116.00
C2—C3—C8120.9 (3)C8—C9—H9116.00
C3—C4—C5121.3 (4)C11—C10—H10116.00
C4—C5—C6120.0 (4)C9—C10—H10116.00
C5—C6—C7119.4 (3)C11—C12—H12119.00
C6—C7—C8121.4 (4)C13—C12—H12119.00
C3—C8—C7118.4 (4)C12—C13—H13120.00
C7—C8—C9118.4 (4)C14—C13—H13120.00
C3—C8—C9123.1 (3)C15—C14—H14120.00
C8—C9—C10127.8 (4)C13—C14—H14120.00
C9—C10—C11128.3 (4)C14—C15—H15120.00
C10—C11—C12118.9 (4)C16—C15—H15120.00
C12—C11—C16116.8 (4)O2—C17—C18124.2 (4)
C10—C11—C16124.3 (4)O3—C17—C18113.1 (3)
C11—C12—C13122.0 (5)O2—C17—O3122.7 (4)
C12—C13—C14119.8 (5)C17—C18—H18A110.00
C13—C14—C15120.5 (6)C17—C18—H18B110.00
C14—C15—C16120.2 (5)C17—C18—H18C112.00
C2—C16—C11119.8 (4)H18A—C18—H18B107.00
C11—C16—C15120.6 (4)H18A—C18—H18C109.00
C2—C16—C15119.5 (4)H18B—C18—H18C109.00
O1—C1—C2—C3−157.1 (3)C5—C6—C7—C82.5 (7)
O1—C1—C2—C16−27.1 (5)C6—C7—C8—C3−4.4 (6)
N1—C1—C2—C327.5 (5)C6—C7—C8—C9173.5 (4)
N1—C1—C2—C16157.4 (3)C3—C8—C9—C1033.2 (6)
C1—C2—C3—C4−116.5 (4)C7—C8—C9—C10−144.6 (4)
C1—C2—C3—C864.0 (4)C8—C9—C10—C11−2.4 (7)
C16—C2—C3—C4114.9 (4)C9—C10—C11—C12149.6 (5)
C16—C2—C3—C8−64.6 (5)C9—C10—C11—C16−30.0 (7)
C1—C2—C16—C11−67.0 (5)C10—C11—C12—C13−177.3 (5)
C1—C2—C16—C15110.0 (4)C16—C11—C12—C132.4 (8)
C3—C2—C16—C1164.2 (5)C10—C11—C16—C2−5.9 (6)
C3—C2—C16—C15−118.8 (4)C10—C11—C16—C15177.2 (4)
C2—C3—C4—C5179.6 (4)C12—C11—C16—C2174.4 (4)
C8—C3—C4—C5−0.8 (6)C12—C11—C16—C15−2.5 (6)
C2—C3—C8—C7−177.0 (4)C11—C12—C13—C14−0.8 (9)
C2—C3—C8—C95.2 (5)C12—C13—C14—C15−0.9 (9)
C4—C3—C8—C73.5 (5)C13—C14—C15—C160.8 (8)
C4—C3—C8—C9−174.3 (4)C14—C15—C16—C2−175.9 (4)
C3—C4—C5—C6−1.1 (7)C14—C15—C16—C111.0 (7)
C4—C5—C6—C70.3 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.882.272.888 (4)128
N1—H2N···O2ii0.882.183.018 (4)158
O3—H3···O1iii0.841.732.565 (4)169

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2234).

References

  • Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr.22, 177–183.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem.70, 836–840. [PubMed]
  • Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem.7, 88–94. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  • Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [PubMed]
  • Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  • Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci.95, 1918–1930. [PubMed]
  • Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
  • Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.
  • Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. [PubMed]
  • Johnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361–o5362.
  • Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.
  • Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography