PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1036–o1037.
Published online 2008 May 10. doi:  10.1107/S1600536808013081
PMCID: PMC2961605

2,4,6-Tris(1-oxo-2-pyridylsulfanylmeth­yl)mesitylene methanol solvate

Abstract

In the title compound, C27H27N3O3S3·CH4O, the dihedral angles formed by the mesitylene ring with the three oxopyridyl rings are 89.6 (1), 75.5 (1) and 80.69 (1)°, indicating that all three are nearly perpendicular to the mesitylene ring. Intra­molecular C—H(...)S hydrogen bonds generate S(6) ring motifs. The crystal structure is stabilized by intra­molecular C—H(...)S and inter­molecular C—H(...)O hydrogen bonds and weak C—H(...)π inter­actions.

Related literature

For related literature on the biological activity of N-oxides see: Lobana et al., (1989 [triangle]); Symons & West (1985 [triangle]); Katsuyuki et al. (1991 [triangle]); Bovin et al. (1992 [triangle]); Leonard et al.(1955 [triangle]). For related literature on N-oxides, see: Jebas et al. (2005 [triangle]); Ravindran et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]); Jebas et al. (2005); Ravindran et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1036-scheme1.jpg

Experimental

Crystal data

  • C27H27N3O3S3·CH4O
  • M r = 569.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1036-efi1.jpg
  • a = 11.9644 (17) Å
  • b = 14.9129 (8) Å
  • c = 15.467 (2) Å
  • β = 91.733 (7)°
  • V = 2758.4 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.78 mm−1
  • T = 298 (2) K
  • 0.52 × 0.42 × 0.06 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.296, T max = 0.842
  • 5226 measured reflections
  • 5226 independent reflections
  • 4156 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.150
  • S = 1.08
  • 5226 reflections
  • 347 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013081/at2565sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013081/at2565Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BRDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al.,1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al.,1991; Bovin et al. 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al.,1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran et al., 2008). The N–O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N–oxides (Allen et al.,1987).

The meistylene ring is planar with the maximum deviation from planarity being -0.036 (1) Å. The dihedral angle formed by the meistylene ring with the oxopyridinium rings (C1–C5/N6) 89.6 (1) °; (C21–C25/N26) 75.5 (1) ° and (C30–C34/N35) 80.69 (1) ° respectively, indicating that all the three oxopyridinium rings are perpendicular to the meistylene ring.

Intramolecular C—H···S hydrogen bonds generate S(6)S(6) ring motifs. The crystal structure is stabilized by intramolecular C—H···S and intermolecular C—H··· O hydrogen bonds and weak C—H···π interactions (Table 1, where Cg1 is the centroid of the ring C10-C15).

Experimental

A mixture of tris(bromomethyl)mesitylene (0.399 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.448 g, 3 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.494 g, 92%). The compound was recrystallized from chloroform-methanol (1:2 v/v).

Refinement

H atoms were positioned geometrically [C—H = 0.93 (aromatic), 0.96 Å (methyl) 0.97 Å (methylene), and 0.82Å O—H] and refined using a riding model, with Uiso(H) = 1.2 or -1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme.

Crystal data

C27H27N3O3S3·CH4OF000 = 1200
Mr = 569.74Dx = 1.372 Mg m3
Monoclinic, P21/cCu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.9644 (17) Åθ = 61–69º
b = 14.9129 (8) ŵ = 2.78 mm1
c = 15.467 (2) ÅT = 298 (2) K
β = 91.733 (7)ºBlock, colourless
V = 2758.4 (6) Å30.52 × 0.42 × 0.06 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerθmax = 69.9º
Monochromator: graphiteθmin = 3.7º
ω/2θ scansh = 0→14
Absorption correction: ψ scan(North et al., 1968)k = −18→0
Tmin = 0.296, Tmax = 0.842l = −18→18
5226 measured reflections3 standard reflections
5226 independent reflections every 60 min
4156 reflections with I > 2σ(I) intensity decay: 3%
Rint = 0

Refinement

Refinement on F212 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0834P)2 + 0.7123P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.49 e Å3
5226 reflectionsΔρmin = −0.32 e Å3
347 parametersExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3585 (2)0.25409 (17)−0.03619 (16)0.0411 (6)
C20.4031 (2)0.2831 (2)−0.11233 (17)0.0509 (7)
H20.44150.3372−0.1140.061*
C30.3906 (3)0.2318 (2)−0.18594 (19)0.0595 (8)
H30.41890.2516−0.23790.071*
C40.3357 (3)0.1508 (2)−0.1818 (2)0.0627 (8)
H40.32830.1149−0.23070.075*
C50.2921 (3)0.1234 (2)−0.1054 (2)0.0593 (8)
H50.25520.0686−0.10280.071*
N60.30179 (19)0.17480 (15)−0.03383 (15)0.0475 (5)
O70.2579 (2)0.15045 (15)0.03880 (14)0.0660 (6)
S80.36161 (6)0.30782 (4)0.06449 (4)0.04599 (19)
C90.4460 (2)0.40587 (17)0.04115 (15)0.0442 (6)
H9A0.52030.38790.02450.053*
H9B0.41170.4404−0.00570.053*
C100.4525 (2)0.46111 (16)0.12348 (15)0.0380 (5)
C110.3677 (2)0.52357 (17)0.13909 (16)0.0407 (5)
C120.3725 (2)0.57310 (16)0.21599 (16)0.0401 (5)
C130.4580 (2)0.55854 (16)0.27863 (16)0.0401 (5)
C140.5453 (2)0.49992 (16)0.25966 (15)0.0384 (5)
C150.5413 (2)0.44950 (16)0.18286 (15)0.0384 (5)
C160.2719 (3)0.5372 (2)0.07464 (19)0.0551 (7)
H16A0.28810.58710.03780.083*
H16B0.20470.54910.10490.083*
H16C0.26210.48410.04010.083*
C170.4548 (3)0.6036 (2)0.36637 (19)0.0588 (8)
H17A0.49660.65850.36520.088*
H17B0.4870.56450.40960.088*
H17C0.37860.61640.37990.088*
C180.6333 (3)0.3827 (2)0.16668 (19)0.0535 (7)
H18A0.60670.33840.1260.08*
H18B0.65520.3540.22010.08*
H18C0.69640.41330.14370.08*
C190.2853 (2)0.64413 (18)0.2303 (2)0.0489 (6)
H19A0.26880.67580.17660.059*
H19B0.3130.68720.27280.059*
S200.15895 (7)0.59076 (5)0.26844 (6)0.0598 (2)
C210.0714 (2)0.6832 (2)0.2755 (2)0.0534 (7)
C220.0959 (3)0.7726 (2)0.2634 (2)0.0627 (8)
H220.1670.78910.24650.075*
C230.0164 (3)0.8378 (3)0.2760 (3)0.0754 (10)
H230.03330.8980.26740.09*
C24−0.0876 (3)0.8128 (3)0.3012 (3)0.0837 (12)
H24−0.14120.85610.31210.1*
C25−0.1127 (3)0.7240 (3)0.3104 (3)0.0831 (12)
H25−0.18410.70720.32630.1*
N26−0.0351 (2)0.6605 (2)0.29666 (19)0.0687 (8)
O27−0.0591 (2)0.57455 (19)0.3027 (2)0.0984 (10)
C280.6442 (2)0.49055 (18)0.32203 (17)0.0450 (6)
H28A0.65310.54480.35610.054*
H28B0.7120.48130.29030.054*
S290.62016 (6)0.39480 (5)0.39312 (5)0.0517 (2)
C300.7555 (2)0.37491 (19)0.43343 (17)0.0475 (6)
C310.8492 (3)0.4281 (2)0.4247 (2)0.0604 (8)
H310.84310.48440.39930.073*
C320.9529 (3)0.3962 (3)0.4545 (3)0.0771 (10)
H321.01710.43010.44750.093*
C330.9589 (4)0.3142 (3)0.4943 (3)0.0871 (13)
H331.02780.29220.51420.104*
C340.8648 (4)0.2647 (3)0.5050 (2)0.0772 (11)
H340.87010.20940.53270.093*
N350.7633 (2)0.29458 (17)0.47588 (16)0.0572 (6)
O360.6727 (2)0.24782 (16)0.48565 (16)0.0756 (7)
O1L−0.1572 (5)0.5507 (4)0.1374 (4)0.205 (2)
H1L−0.120.51360.16490.308*
C2L−0.0867 (7)0.5996 (6)0.0829 (5)0.189 (3)
H2LA−0.05210.64780.1150.284*
H2LB−0.13010.62370.03510.284*
H2LC−0.030.56060.06150.284*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0480 (14)0.0322 (12)0.0432 (13)0.0010 (10)0.0013 (11)−0.0040 (10)
C20.0599 (16)0.0485 (16)0.0447 (14)−0.0036 (13)0.0087 (12)−0.0060 (12)
C30.0659 (19)0.066 (2)0.0471 (15)0.0032 (16)0.0085 (14)−0.0108 (14)
C40.0639 (18)0.065 (2)0.0594 (18)0.0085 (16)−0.0044 (15)−0.0287 (16)
C50.0639 (18)0.0428 (16)0.071 (2)−0.0009 (14)−0.0044 (15)−0.0194 (14)
N60.0517 (12)0.0371 (12)0.0536 (13)−0.0005 (10)0.0007 (10)−0.0030 (10)
O70.0869 (16)0.0497 (12)0.0620 (13)−0.0199 (11)0.0136 (12)0.0040 (10)
S80.0649 (4)0.0383 (3)0.0351 (3)−0.0115 (3)0.0081 (3)−0.0010 (2)
C90.0598 (16)0.0381 (14)0.0352 (12)−0.0108 (12)0.0078 (11)−0.0017 (10)
C100.0494 (14)0.0304 (12)0.0346 (12)−0.0079 (10)0.0060 (10)0.0004 (9)
C110.0465 (13)0.0332 (12)0.0425 (13)−0.0049 (10)0.0034 (11)0.0048 (10)
C120.0450 (13)0.0290 (12)0.0467 (13)−0.0001 (10)0.0082 (11)0.0028 (10)
C130.0497 (14)0.0294 (12)0.0416 (13)0.0001 (10)0.0079 (11)−0.0017 (10)
C140.0464 (13)0.0305 (12)0.0384 (12)−0.0026 (10)0.0037 (10)0.0024 (10)
C150.0477 (13)0.0293 (12)0.0387 (12)−0.0008 (10)0.0094 (10)0.0007 (9)
C160.0574 (17)0.0541 (17)0.0534 (16)0.0011 (14)−0.0053 (13)0.0049 (13)
C170.074 (2)0.0518 (17)0.0513 (16)0.0057 (15)0.0062 (14)−0.0164 (13)
C180.0585 (17)0.0464 (16)0.0557 (16)0.0127 (13)0.0063 (13)−0.0059 (13)
C190.0485 (14)0.0331 (13)0.0655 (17)0.0037 (11)0.0095 (13)0.0016 (12)
S200.0567 (4)0.0417 (4)0.0823 (5)0.0054 (3)0.0209 (4)0.0093 (3)
C210.0492 (15)0.0523 (17)0.0592 (17)0.0065 (13)0.0094 (13)0.0061 (13)
C220.0565 (17)0.0502 (17)0.082 (2)0.0055 (14)0.0066 (16)0.0005 (16)
C230.073 (2)0.054 (2)0.100 (3)0.0166 (18)0.006 (2)0.0046 (19)
C240.074 (2)0.078 (3)0.099 (3)0.032 (2)0.014 (2)0.010 (2)
C250.0563 (19)0.096 (3)0.099 (3)0.020 (2)0.0250 (19)0.020 (2)
N260.0583 (15)0.0674 (18)0.0815 (19)0.0050 (14)0.0231 (14)0.0188 (15)
O270.0813 (18)0.0709 (17)0.146 (3)−0.0036 (14)0.0488 (18)0.0273 (17)
C280.0495 (14)0.0383 (14)0.0471 (14)−0.0038 (11)−0.0007 (12)0.0030 (11)
S290.0522 (4)0.0503 (4)0.0524 (4)−0.0049 (3)−0.0013 (3)0.0111 (3)
C300.0598 (16)0.0425 (14)0.0399 (13)0.0037 (12)−0.0041 (12)−0.0029 (11)
C310.0605 (18)0.0562 (18)0.0639 (18)−0.0008 (15)−0.0104 (15)−0.0032 (15)
C320.058 (2)0.085 (3)0.087 (3)0.0017 (18)−0.0141 (18)−0.015 (2)
C330.080 (3)0.092 (3)0.087 (3)0.030 (2)−0.032 (2)−0.016 (2)
C340.101 (3)0.066 (2)0.064 (2)0.025 (2)−0.022 (2)0.0010 (17)
N350.0801 (18)0.0444 (14)0.0467 (13)0.0080 (13)−0.0035 (12)0.0002 (11)
O360.0988 (18)0.0528 (14)0.0755 (15)−0.0065 (13)0.0083 (14)0.0178 (12)
O1L0.213 (4)0.187 (4)0.214 (4)−0.065 (4)−0.012 (3)−0.012 (3)
C2L0.178 (5)0.210 (5)0.179 (5)−0.041 (4)−0.017 (4)0.006 (4)

Geometric parameters (Å, °)

C1—N61.364 (3)C19—S201.822 (3)
C1—C21.377 (4)C19—H19A0.97
C1—S81.751 (2)C19—H19B0.97
C2—C31.376 (4)S20—C211.737 (3)
C2—H20.93C21—N261.368 (4)
C3—C41.377 (5)C21—C221.378 (4)
C3—H30.93C22—C231.379 (4)
C4—C51.368 (5)C22—H220.93
C4—H40.93C23—C241.368 (5)
C5—N61.349 (4)C23—H230.93
C5—H50.93C24—C251.366 (6)
N6—O71.306 (3)C24—H240.93
S8—C91.820 (3)C25—N261.348 (5)
C9—C101.517 (3)C25—H250.93
C9—H9A0.97N26—O271.318 (4)
C9—H9B0.97C28—S291.830 (3)
C10—C151.394 (4)C28—H28A0.97
C10—C111.404 (4)C28—H28B0.97
C11—C121.400 (4)S29—C301.742 (3)
C11—C161.510 (4)C30—N351.368 (4)
C12—C131.404 (4)C30—C311.384 (4)
C12—C191.508 (3)C31—C321.394 (5)
C13—C141.400 (3)C31—H310.93
C13—C171.516 (4)C32—C331.370 (6)
C14—C151.406 (3)C32—H320.93
C14—C281.510 (3)C33—C341.361 (6)
C15—C181.511 (4)C33—H330.93
C16—H16A0.96C34—N351.358 (4)
C16—H16B0.96C34—H340.93
C16—H16C0.96N35—O361.302 (4)
C17—H17A0.96O1L—C2L1.414 (9)
C17—H17B0.96O1L—H1L0.82
C17—H17C0.96C2L—H2LA0.96
C18—H18A0.96C2L—H2LB0.96
C18—H18B0.96C2L—H2LC0.96
C18—H18C0.96
N6—C1—C2120.1 (2)H18A—C18—H18C109.5
N6—C1—S8111.72 (18)H18B—C18—H18C109.5
C2—C1—S8128.2 (2)C12—C19—S20108.98 (18)
C3—C2—C1119.8 (3)C12—C19—H19A109.9
C3—C2—H2120.1S20—C19—H19A109.9
C1—C2—H2120.1C12—C19—H19B109.9
C2—C3—C4119.3 (3)S20—C19—H19B109.9
C2—C3—H3120.4H19A—C19—H19B108.3
C4—C3—H3120.4C21—S20—C19100.44 (13)
C5—C4—C3119.8 (3)N26—C21—C22118.4 (3)
C5—C4—H4120.1N26—C21—S20112.7 (2)
C3—C4—H4120.1C22—C21—S20128.9 (2)
N6—C5—C4120.9 (3)C21—C22—C23120.8 (3)
N6—C5—H5119.6C21—C22—H22119.6
C4—C5—H5119.6C23—C22—H22119.6
O7—N6—C5121.4 (2)C24—C23—C22119.0 (4)
O7—N6—C1118.5 (2)C24—C23—H23120.5
C5—N6—C1120.1 (3)C22—C23—H23120.5
C1—S8—C9100.86 (12)C25—C24—C23119.9 (3)
C10—C9—S8106.53 (16)C25—C24—H24120
C10—C9—H9A110.4C23—C24—H24120
S8—C9—H9A110.4N26—C25—C24120.7 (3)
C10—C9—H9B110.4N26—C25—H25119.7
S8—C9—H9B110.4C24—C25—H25119.7
H9A—C9—H9B108.6O27—N26—C25121.3 (3)
C15—C10—C11120.6 (2)O27—N26—C21117.7 (3)
C15—C10—C9120.3 (2)C25—N26—C21121.0 (3)
C11—C10—C9119.1 (2)C14—C28—S29108.76 (17)
C12—C11—C10119.0 (2)C14—C28—H28A109.9
C12—C11—C16120.1 (2)S29—C28—H28A109.9
C10—C11—C16120.9 (2)C14—C28—H28B109.9
C11—C12—C13121.0 (2)S29—C28—H28B109.9
C11—C12—C19119.0 (2)H28A—C28—H28B108.3
C13—C12—C19120.0 (2)C30—S29—C28100.76 (13)
C14—C13—C12119.0 (2)N35—C30—C31120.3 (3)
C14—C13—C17120.3 (2)N35—C30—S29111.7 (2)
C12—C13—C17120.7 (2)C31—C30—S29127.9 (2)
C13—C14—C15120.3 (2)C30—C31—C32119.2 (3)
C13—C14—C28119.9 (2)C30—C31—H31120.4
C15—C14—C28119.8 (2)C32—C31—H31120.4
C10—C15—C14119.8 (2)C33—C32—C31119.2 (4)
C10—C15—C18121.1 (2)C33—C32—H32120.4
C14—C15—C18119.1 (2)C31—C32—H32120.4
C11—C16—H16A109.5C34—C33—C32120.4 (4)
C11—C16—H16B109.5C34—C33—H33119.8
H16A—C16—H16B109.5C32—C33—H33119.8
C11—C16—H16C109.5N35—C34—C33121.1 (4)
H16A—C16—H16C109.5N35—C34—H34119.4
H16B—C16—H16C109.5C33—C34—H34119.4
C13—C17—H17A109.5O36—N35—C34121.7 (3)
C13—C17—H17B109.5O36—N35—C30118.7 (3)
H17A—C17—H17B109.5C34—N35—C30119.6 (3)
C13—C17—H17C109.5C2L—O1L—H1L109.5
H17A—C17—H17C109.5O1L—C2L—H2LA109.5
H17B—C17—H17C109.5O1L—C2L—H2LB109.5
C15—C18—H18A109.5H2LA—C2L—H2LB109.5
C15—C18—H18B109.5O1L—C2L—H2LC109.5
H18A—C18—H18B109.5H2LA—C2L—H2LC109.5
C15—C18—H18C109.5H2LB—C2L—H2LC109.5
N6—C1—C2—C3−0.2 (4)C13—C14—C15—C103.0 (3)
S8—C1—C2—C3−178.9 (2)C28—C14—C15—C10−177.1 (2)
C1—C2—C3—C4−1.6 (5)C13—C14—C15—C18−176.4 (2)
C2—C3—C4—C51.6 (5)C28—C14—C15—C183.5 (3)
C3—C4—C5—N60.2 (5)C11—C12—C19—S2081.2 (3)
C4—C5—N6—O7178.1 (3)C13—C12—C19—S20−99.9 (2)
C4—C5—N6—C1−1.9 (4)C12—C19—S20—C21−177.6 (2)
C2—C1—N6—O7−178.1 (3)C19—S20—C21—N26174.9 (2)
S8—C1—N6—O70.8 (3)C19—S20—C21—C22−5.5 (4)
C2—C1—N6—C51.9 (4)N26—C21—C22—C232.8 (5)
S8—C1—N6—C5−179.1 (2)S20—C21—C22—C23−176.7 (3)
N6—C1—S8—C9177.65 (19)C21—C22—C23—C240.3 (6)
C2—C1—S8—C9−3.5 (3)C22—C23—C24—C25−2.5 (7)
C1—S8—C9—C10178.14 (19)C23—C24—C25—N261.5 (7)
S8—C9—C10—C1592.9 (2)C24—C25—N26—O27−177.9 (4)
S8—C9—C10—C11−86.7 (2)C24—C25—N26—C211.8 (6)
C15—C10—C11—C12−1.1 (3)C22—C21—N26—O27175.8 (3)
C9—C10—C11—C12178.6 (2)S20—C21—N26—O27−4.5 (4)
C15—C10—C11—C16179.3 (2)C22—C21—N26—C25−3.9 (5)
C9—C10—C11—C16−1.0 (3)S20—C21—N26—C25175.7 (3)
C10—C11—C12—C13−2.6 (4)C13—C14—C28—S2994.8 (2)
C16—C11—C12—C13177.0 (2)C15—C14—C28—S29−85.0 (2)
C10—C11—C12—C19176.3 (2)C14—C28—S29—C30162.19 (18)
C16—C11—C12—C19−4.1 (4)C28—S29—C30—N35−168.0 (2)
C11—C12—C13—C146.3 (4)C28—S29—C30—C3110.1 (3)
C19—C12—C13—C14−172.5 (2)N35—C30—C31—C324.3 (5)
C11—C12—C13—C17−172.2 (2)S29—C30—C31—C32−173.7 (3)
C19—C12—C13—C179.0 (4)C30—C31—C32—C33−2.1 (5)
C12—C13—C14—C15−6.5 (3)C31—C32—C33—C34−0.3 (6)
C17—C13—C14—C15172.0 (2)C32—C33—C34—N350.7 (6)
C12—C13—C14—C28173.6 (2)C33—C34—N35—O36180.0 (3)
C17—C13—C14—C28−7.9 (4)C33—C34—N35—C301.4 (5)
C11—C10—C15—C140.8 (3)C31—C30—N35—O36177.5 (3)
C9—C10—C15—C14−178.9 (2)S29—C30—N35—O36−4.2 (3)
C11—C10—C15—C18−179.8 (2)C31—C30—N35—C34−3.9 (4)
C9—C10—C15—C180.5 (3)S29—C30—N35—C34174.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1L—H1L···O270.822.412.804 (7)110
C16—H16A···O36i0.962.473.348 (4)152
C16—H16B···S200.962.683.420 (3)135
C18—H18B···S290.962.793.515 (3)133
C25—H25···O7ii0.932.443.147 (5)133
C28—H28A···O7i0.972.483.397 (3)157
C31—H31···O27iii0.932.353.107 (4)139
C2—H2···Cg1iv0.932.913.774 (3)154
C4—H4···Cg1v0.932.673.377 (3)134

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, −y+1, −z; (v) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2565).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  • Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  • Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
  • Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography