PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): i34.
Published online 2008 May 17. doi:  10.1107/S1600536808013925
PMCID: PMC2961604

A monoclinic polymorph of KY(PO3)4

Abstract

The title compound, potassium yttrium polyphosphate, KY(PO3)4, was synthesized using the flux method. The atomic arrangement consists of an infinite long-chain polyphosphate organization. Chains, with a period of four PO4 tetra­hedra, run along the a-axis direction. Two other polymorphs of this phosphate are known, in space groups P21/n and C2/c.

Related literature

For related structures, see: Durif (1995 [triangle]); Hamady et al. (1995 [triangle]); Hong et al. (1975 [triangle]); Malinowski (1990 [triangle]); Malinowski et al. (1988 [triangle]); Palkina et al. (1977 [triangle]). For earlier work on KY(PO3)4, see: Jouini et al. (2003 [triangle]). For related literature, see: Sun et al. (2004 [triangle]).

Experimental

Crystal data

  • KY(PO3)4
  • M r = 443.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i34-efi1.jpg
  • a = 7.2244 (3) Å
  • b = 8.2825 (3) Å
  • c = 7.854 (4) Å
  • β = 91.735 (3)°
  • V = 469.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 7.40 mm−1
  • T = 298 (2) K
  • 0.16 × 0.14 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.321, T max = 0.376
  • 3651 measured reflections
  • 2011 independent reflections
  • 1904 reflections with I > 2σ(I)
  • R int = 0.081
  • 2 standard reflections every 150 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.138
  • S = 1.13
  • 2011 reflections
  • 165 parameters
  • 1 restraint
  • Δρmax = 1.19 e Å−3
  • Δρmin = −2.67 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 867 Friedel pairs
  • Flack parameter: 0.002 (9)

Data collection: CAD-4 EXPRESS (Duisenberg, 1992 [triangle]; Macíček & Yordanov, 1992 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013925/br2073sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013925/br2073Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Yttrium condensed phosphates have been considered as a crystal hosts for optical materials when doped with lanthanides, due to there high-temperature chemical stability, high yield intrinsic fluorescence and minimal trapping of excitation, rendering them attractive materials for investigations of the energy transfer phenomena and fluorescence quenching(Malinowski, 1990; Malinowski et al., 1988). The literature dealing with these compounds was rather confusing for some time, between cyclic or chain condensed phosphates, but it is currently well established that the MIY(PO3)4 compounds are polyphosphates with infinite chain and MIYP4O12 are cyclotetraphosphates (with MI= monovalent cation) (Durif, 1995). In our laboratory we have synthesized the potassium and yttrium polyphosphates to establish the solid–liquid equilibrium diagram of the KPO3–Y(PO3)3 system (Jouini et al., 2003). Three allotropic phases with the space groups P21, P21/n and C2/c were isolated and characterized. The three monoclinic allotropes are: i) KY(PO3)4 polyphosphate with the P21 space group, isostructural with KNd(PO3)4 (Hong, 1975). ii) KY(PO3)4 polyphosphate belongs to P21/n space group, and is isostructural with TlNd(PO3)4 (Palkina et al., 1977). In these two forms the phosphate anion has a chain structure. iii) The third allotropic form is KYP4O12 which crystallizes in the C2/c space group, only this structure was investigated (Hamady, 1995). This paper is devoted to the crystal structure of the first polymorph KY(PO3)4 (P21). The atomic arrangement of this srtucture is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra (Figs 1,2). The chains run along the a axis , with four PO4 tetrahedra in a repeating unit. KY(PO3)4 is isostructural with KNd(PO3)4 , but not with CsLa(PO3)4 (Sun et al., 2004) although they belong to the same space group, P21. In the latter, the infinite screw (PO3)n chains are repeated after every eighth PO4 group along the b axis. The chains (two per unit cell) are joined to each other by YO8 polyhedra (Fig 3.), no O atom is shared with the adjacent YO8 polyhedra. The K atoms are in an eightfold coordination.

Experimental

Single crystal of KY(PO3)4 was prepared by flux method. Homogeneous solution of potassium carbonate K2CO3 (6 g) and yttrium oxide Y2O3 (0.5 g) containing a large excess of orthophosphoric acid H3PO4 (16 ml, 85% concentration) was heated in a vitreous carbon crucible at 473 K for 1 day. Then the temperature of the furnace was slowly raised to the predermined temperature in the range of 573–623 K for 7 days. Crystals were separated from the excess phosphoric acid by washing the product in boiling water.

Refinement

The highest peak and the deepest hole are located 0.09Å and 0.85 Å from Y.

Figures

Fig. 1.
: Projection of KY(PO3)4 with anisotropic displacement parameters drawn at the 50% probability level.
Fig. 2.
: The structural arrangement of KY(PO3)4 along the b axis.
Fig. 3.
: Projection of KY(PO3)4 along the a axis, showing isolated YO8 polyhedra joined to (PO3)n chains.

Crystal data

KY(PO3)4F000 = 428
Mr = 443.89Dx = 3.138 Mg m3
Monoclinic, P21Melting point: 760 K
Hall symbol: P 2ybMo Kα radiation λ = 0.71073 Å
a = 7.2244 (3) ÅCell parameters from 25 reflections
b = 8.2825 (3) Åθ = 2.6–27.5º
c = 7.854 (4) ŵ = 7.40 mm1
β = 91.735 (3)ºT = 298 (2) K
V = 469.7 (2) Å3Prism, colourless
Z = 20.16 × 0.14 × 0.13 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.081
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 2.6º
T = 298(2) Kh = −7→9
ω/2θ scansk = −8→10
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)l = −8→10
Tmin = 0.321, Tmax = 0.3762 standard reflections
3651 measured reflections every 150 reflections
2011 independent reflections intensity decay: 2%
1904 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0908P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max < 0.001
wR(F2) = 0.138Δρmax = 1.19 e Å3
S = 1.13Δρmin = −2.67 e Å3
2011 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
165 parametersExtinction coefficient: 0.065 (7)
1 restraintAbsolute structure: Flack (1983), with 867 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.002 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Y0.23704 (8)0.75897 (9)0.24245 (8)0.0086 (3)
K0.2703 (3)0.4566 (3)−0.2812 (3)0.0303 (6)
P10.4367 (3)0.3830 (2)0.0947 (3)0.0091 (4)
P20.0994 (3)0.1755 (2)0.0978 (2)0.0086 (4)
P3−0.0018 (3)0.4085 (2)0.3809 (2)0.0088 (4)
P40.6161 (3)0.5114 (2)0.3992 (2)0.0084 (4)
O10.3212 (8)0.5292 (7)0.0721 (7)0.0140 (12)
O20.5736 (8)0.3558 (8)−0.0387 (8)0.0184 (13)
O30.3126 (7)0.2261 (7)0.1093 (8)0.0169 (13)
O40.5360 (8)0.3706 (7)0.2789 (7)0.0139 (12)
O50.0239 (8)0.2062 (7)−0.0776 (7)0.0150 (12)
O60.0880 (8)0.0105 (7)0.1732 (7)0.0163 (12)
O7−0.0076 (8)0.2991 (7)0.2159 (8)0.0189 (13)
O80.1660 (7)0.5100 (7)0.3846 (7)0.0124 (11)
O9−0.0337 (8)0.3109 (7)0.5348 (8)0.0167 (12)
O10−0.1755 (8)0.5225 (7)0.3407 (7)0.0121 (11)
O110.5258 (8)0.6648 (7)0.3514 (7)0.0138 (11)
O120.6118 (7)0.4535 (7)0.5773 (7)0.0121 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Y0.0092 (4)0.0103 (4)0.0067 (4)−0.0004 (3)0.0048 (2)−0.0001 (2)
K0.0180 (10)0.0601 (16)0.0129 (8)0.0108 (9)0.0031 (7)−0.0019 (10)
P10.0100 (9)0.0098 (10)0.0080 (9)−0.0003 (7)0.0044 (7)−0.0004 (6)
P20.0084 (9)0.0095 (9)0.0082 (9)−0.0008 (6)0.0034 (7)−0.0004 (7)
P30.0090 (9)0.0107 (10)0.0070 (9)−0.0009 (7)0.0055 (7)0.0003 (7)
P40.0086 (9)0.0088 (9)0.0081 (8)0.0003 (6)0.0032 (7)0.0001 (6)
O10.018 (3)0.012 (3)0.012 (3)0.001 (2)0.003 (2)−0.001 (2)
O20.021 (3)0.021 (3)0.014 (3)0.007 (2)0.011 (2)−0.001 (2)
O30.010 (3)0.018 (3)0.023 (3)−0.003 (2)0.000 (2)−0.004 (2)
O40.016 (3)0.015 (3)0.011 (3)0.001 (2)−0.002 (2)0.000 (2)
O50.014 (3)0.020 (3)0.011 (3)0.004 (2)0.002 (2)−0.003 (2)
O60.019 (3)0.011 (3)0.019 (3)0.003 (2)−0.002 (2)0.004 (2)
O70.018 (3)0.020 (3)0.019 (3)0.003 (2)0.008 (2)−0.010 (2)
O80.008 (3)0.016 (3)0.013 (3)−0.004 (2)0.004 (2)0.004 (2)
O90.017 (3)0.019 (3)0.015 (3)0.003 (2)0.010 (2)0.007 (2)
O100.011 (3)0.015 (3)0.011 (3)−0.002 (2)0.005 (2)0.003 (2)
O110.012 (3)0.015 (3)0.014 (3)0.003 (2)0.000 (2)0.002 (2)
O120.010 (2)0.019 (3)0.008 (2)0.005 (2)0.002 (2)0.000 (2)

Geometric parameters (Å, °)

Y—O2i2.282 (6)P1—O11.479 (6)
Y—O5ii2.296 (6)P1—O21.480 (6)
Y—O9iii2.358 (6)P1—O31.585 (6)
Y—O112.363 (5)P1—O41.599 (5)
Y—O12iv2.387 (5)P2—O51.488 (6)
Y—O6v2.400 (6)P2—O61.492 (6)
Y—O82.408 (6)P2—O31.597 (6)
Y—O12.415 (6)P2—O71.597 (6)
Y—Ki3.921 (2)P3—O81.474 (6)
K—O12vi2.736 (6)P3—O91.478 (6)
K—O8vi2.744 (6)P3—O71.581 (6)
K—O6ii2.785 (6)P3—O101.594 (6)
K—O12.852 (6)P4—O111.472 (6)
K—O9vi2.859 (7)P4—O121.480 (6)
K—O11vii2.892 (7)P4—O10viii1.590 (6)
K—O22.979 (6)P4—O41.598 (6)
K—O53.194 (6)
O2i—Y—O5ii99.8 (2)O9vi—K—O11vii86.49 (17)
O2i—Y—O9iii148.9 (2)O12vi—K—O266.57 (16)
O5ii—Y—O9iii86.2 (2)O8vi—K—O2146.32 (18)
O2i—Y—O1180.1 (2)O6ii—K—O2121.50 (18)
O5ii—Y—O11147.3 (2)O1—K—O250.68 (17)
O9iii—Y—O11110.8 (2)O9vi—K—O2138.0 (2)
O2i—Y—O12iv84.6 (2)O11vii—K—O261.22 (17)
O5ii—Y—O12iv144.7 (2)O12vi—K—O5136.07 (19)
O9iii—Y—O12iv73.79 (19)O8vi—K—O5116.25 (17)
O11—Y—O12iv67.98 (19)O6ii—K—O554.12 (17)
O2i—Y—O6v79.1 (2)O1—K—O572.96 (18)
O5ii—Y—O6v71.5 (2)O9vi—K—O563.10 (17)
O9iii—Y—O6v74.0 (2)O11vii—K—O581.22 (17)
O11—Y—O6v138.9 (2)O2—K—O584.71 (17)
O12iv—Y—O6v75.09 (19)O1—P1—O2115.3 (4)
O2i—Y—O8140.1 (2)O1—P1—O3111.2 (3)
O5ii—Y—O885.16 (19)O2—P1—O3108.5 (4)
O9iii—Y—O870.5 (2)O1—P1—O4113.4 (3)
O11—Y—O875.39 (19)O2—P1—O4109.9 (3)
O12iv—Y—O8113.77 (19)O3—P1—O497.0 (3)
O6v—Y—O8138.4 (2)O5—P2—O6120.0 (3)
O2i—Y—O173.9 (2)O5—P2—O3109.5 (3)
O5ii—Y—O175.7 (2)O6—P2—O3106.4 (3)
O9iii—Y—O1136.7 (2)O5—P2—O7104.9 (3)
O11—Y—O172.9 (2)O6—P2—O7108.9 (4)
O12iv—Y—O1137.92 (19)O3—P2—O7106.4 (3)
O6v—Y—O1132.6 (2)O8—P3—O9116.4 (4)
O8—Y—O169.1 (2)O8—P3—O7110.1 (3)
O12vi—K—O8vi80.69 (17)O9—P3—O7110.9 (4)
O12vi—K—O6ii169.5 (2)O8—P3—O10107.9 (3)
O8vi—K—O6ii91.99 (17)O9—P3—O10110.2 (3)
O12vi—K—O1107.81 (17)O7—P3—O10100.1 (3)
O8vi—K—O1156.9 (2)O11—P4—O12120.0 (3)
O6ii—K—O176.31 (17)O11—P4—O10viii107.0 (3)
O12vi—K—O9vi118.63 (18)O12—P4—O10viii109.8 (3)
O8vi—K—O9vi53.15 (16)O11—P4—O4109.3 (3)
O6ii—K—O9vi60.95 (18)O12—P4—O4107.7 (3)
O1—K—O9vi130.90 (19)O10viii—P4—O4101.5 (3)
O12vi—K—O11vii56.23 (17)P1—O3—P2139.3 (4)
O8vi—K—O11vii94.54 (19)P4—O4—P1129.2 (4)
O6ii—K—O11vii132.5 (2)P3—O7—P2147.4 (4)
O1—K—O11vii108.06 (18)P4ix—O10—P3130.9 (4)

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x, y+1/2, −z; (iii) −x, y+1/2, −z+1; (iv) −x+1, y+1/2, −z+1; (v) x, y+1, z; (vi) x, y, z−1; (vii) −x+1, y−1/2, −z; (viii) x+1, y, z; (ix) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2073).

References

  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, University of Bonn, Germany.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Durif, A. (1995). Crystal Chemistry of Condensed Phosphates New York: Plenum Press.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hamady, A., Jouini, T. & Driss, A. (1995). Acta Cryst. C51, 1970–1972.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hong, H. Y.-P. (1975). Mater. Res. Bull.10, 1105–1110.
  • Jouini, A., Férid, M. & Trabelsi-Ayadi, M. (2003). Thermochim. Acta, 400, 199–204.
  • Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst.25, 73–80.
  • Malinowski, M. (1990). J. Phys. Chem. Solids, 51, 59–64.
  • Malinowski, M., Jackier, B., Boulon, G. & Wolinski, W. (1988). J. Lumin.39, 301–311.
  • Palkina, K. K., Saiffuddinov, V. Z., Kuznetsov, V. G. & Chudinova, N. N. (1977). Dokl. Akad. Nauk SSSR, 237, 837–839.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, T., Shen, G., Wang, X., Wang, R., Wei, J. & Shen, D. (2004). Acta Cryst. E60, i28–i30.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography