PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1101.
Published online 2008 May 17. doi:  10.1107/S1600536808013986
PMCID: PMC2961593

(5S,6S)-4,5-Dimethyl-3-methyl­acryloyl-6-phenyl-1,3,4-oxadiazinan-2-one

Abstract

The title compound, C15H18N2O3, is an example of an oxadiazinan-2-one with significant inter­action between the N3-acyl and N4-methyl groups. These steric inter­actions result in a large torsion angle between the two carbonyl groups, not present with acyl substituents with less steric demand.

Related literature

For related literature, see: Bruno et al. 2004 [triangle]; Burgeson et al. (2004 [triangle]); Casper et al. (2002a [triangle],b [triangle]); Ferrence et al. (2003 [triangle]); Hitchcock et al. (2001 [triangle], 2004 [triangle]); Szczepura et al. (2004 [triangle]); Trepanier et al. (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1101-scheme1.jpg

Experimental

Crystal data

  • C15H18N2O3
  • M r = 274.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1101-efi1.jpg
  • a = 8.7962 (6) Å
  • b = 9.7797 (6) Å
  • c = 16.6782 (11) Å
  • V = 1434.73 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 193 (2) K
  • 0.46 × 0.38 × 0.21 mm

Data collection

  • Bruker P4/R4/SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003 [triangle]) T min = 0.865, T max = 0.982
  • 9610 measured reflections
  • 1702 independent reflections
  • 1593 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.080
  • S = 1.07
  • 1702 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013986/zl2116sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013986/zl2116Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Robert McDonald and Michael Ferguson, X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta for the data collection.

supplementary crystallographic information

Comment

In recent years, the synthesis of varying oxadiazinanones has led to chiral auxiliaries used in aldol addition reactions. The fundamental heterocyclic structure of related 1,3,4-oxadiazinan-2-one compounds has been known for nearly forty years (Trepanier et al., 1968); however, it has not been until recent years that more detailed conformational studies have been performed on species containing an N3-acyl substituent (Hitchcock et al., 2001; Casper et al., 2002a). The influence of the N3-acyl substituent is of significant importance in these studies. When the N3-acyl substituent is of low steric demand the two carbonyls found in the molecule are co-planar and point at one another. However, when the N3-substituent is of high steric demand, repulsive steric interactions between the N3-acyl substituent and the N4-methyl group cause the two carbonyls to twist out of planarity. The molecule represented herein is an example of a structure in which the acyl substituent at the N3 position has a high steric demand.

Herein we report the single-crystal X-ray structure of a vinyl-acylated pseudoephedrine-derived 1,3,4-oxadiazinan-2-one (I). Several structures for various N3 substituted oxadiazananones have been published (Burgeson et al., 2004; Casper et al., 2002b; Ferrence et al., 2003; Hitchcock et al., 2001, 2004). Also, a compound unsubstituted at the N3 position has been synthesized (Szczepura et al., 2004). A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles, distances and torsions to be within typical ranges. The structures of previously reported acetyl, propionyl, and t-butylacetyl substituents at the N3 position exhibit syn-parallel carbonyls. In contrast, in the title compound the 150.8 (2)° O16—C15—N3—C2 and 132.4 (3)° O20—C2—C15—O16 torsion angles are indicative of anti-parallel arrangement of the imide carbonyl groups. It appears likely that this arrangement helps to relieve steric congestion between the O16 carbonyl and the vinyl moiety while at the same time avoiding steric interactions between the N4 methyl group and the vinyl CH2 group. The O16—C15—C17—C18 torsion angle is 130.5 (2)°. The potential for steric interactions is further illustrated in the Jmol enhanced figure (Fig. 2).

Experimental

The title compound was prepared by acylation of pseudoephedrine derived 1,3,4-oxadiazinan-2-one using sodium hexamethyldisilazane and methylacrylolyl chloride (Casper et al., 2002a).

Refinement

All non-H atoms were refined anisotropically without disorder, except for the C19 methyl group which had H-atoms attached as rotationally disordered methyl groups using the AFIX 123 command. All H atoms were initially identified through difference Fourier synthesis then removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and sp2 CH2 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
J mol enhanced figure of I. The default view shows the asymmetric unit which is the main residue depicted with a space-filling perspective. Several Jmol button scripts are provided to highlight key structural and crystallographic features.

Crystal data

C15H18N2O3F000 = 584
Mr = 274.31Dx = 1.27 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7730 reflections
a = 8.7962 (6) Åθ = 3.3–26.4º
b = 9.7797 (6) ŵ = 0.09 mm1
c = 16.6782 (11) ÅT = 193 (2) K
V = 1434.73 (16) Å3Prism, colourless
Z = 40.46 × 0.38 × 0.21 mm

Data collection

Bruker P4/R4/SMART 1000 CCD diffractometer1702 independent reflections
Radiation source: sealed tube1593 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 193(2) Kθmax = 26.4º
/w scansθmin = 2.4º
Absorption correction: multi-scan(SADABS in SAINT-Plus; Bruker, 2003)h = −10→11
Tmin = 0.865, Tmax = 0.982k = −11→12
9610 measured reflectionsl = −20→20

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.039P)2 + 0.2942P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.080Δρmax = 0.15 e Å3
S = 1.07Δρmin = −0.12 e Å3
1702 reflectionsExtinction correction: none
181 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.56811 (14)0.91142 (13)0.46559 (7)0.0296 (3)
C20.6459 (2)0.85642 (18)0.40478 (10)0.0255 (4)
N30.56076 (17)0.80251 (16)0.34127 (8)0.0270 (3)
N40.40508 (18)0.76608 (16)0.35333 (9)0.0281 (3)
C50.3312 (2)0.8846 (2)0.39098 (11)0.0275 (4)
H50.35180.96680.3570.033*
C60.4005 (2)0.90915 (19)0.47323 (10)0.0266 (4)
H60.37260.83010.50830.032*
C70.3531 (2)1.0377 (2)0.51526 (11)0.0293 (4)
C80.2870 (2)1.0285 (2)0.59025 (12)0.0382 (5)
H80.27670.94150.6150.046*
C90.2356 (3)1.1443 (3)0.63006 (14)0.0501 (6)
H90.19011.13640.68150.06*
C100.2509 (3)1.2699 (3)0.59454 (16)0.0548 (7)
H100.21461.34950.62110.066*
C110.3186 (3)1.2809 (3)0.52055 (17)0.0581 (7)
H110.33051.36850.49670.07*
C120.3698 (3)1.1662 (2)0.48046 (14)0.0432 (5)
H120.41631.17490.42930.052*
C130.1593 (2)0.8641 (2)0.39546 (12)0.0368 (5)
H13A0.1190.84830.34150.055*
H13B0.11190.94590.41840.055*
H13C0.13660.78490.42940.055*
C140.3987 (2)0.63742 (19)0.39932 (11)0.0345 (4)
H14A0.45090.56510.36940.052*
H14B0.29230.61140.40780.052*
H14C0.44860.65030.45130.052*
C150.6276 (2)0.7502 (2)0.27061 (11)0.0302 (4)
O160.56288 (17)0.66036 (17)0.23419 (8)0.0436 (4)
C170.7710 (2)0.8135 (3)0.24081 (11)0.0395 (5)
C180.7866 (3)0.9514 (3)0.23698 (14)0.0552 (7)
H18A0.87420.99030.21270.066*
H18B0.70991.0090.25860.066*
C190.8816 (3)0.7179 (3)0.20957 (19)0.0697 (9)
H19A0.84640.62420.21910.105*0.5
H19B0.97930.73190.23660.105*0.5
H19C0.89410.73270.15180.105*0.5
H19D0.96680.76840.18590.105*0.5
H19E0.83390.66060.16840.105*0.5
H19F0.91910.65990.25320.105*0.5
O200.78185 (15)0.85606 (15)0.40662 (8)0.0334 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0264 (7)0.0361 (7)0.0264 (6)0.0026 (6)−0.0026 (5)−0.0042 (5)
C20.0276 (9)0.0240 (9)0.0249 (8)0.0016 (7)−0.0016 (7)0.0032 (7)
N30.0232 (8)0.0327 (8)0.0250 (7)−0.0007 (7)0.0007 (6)−0.0016 (6)
N40.0239 (8)0.0330 (8)0.0273 (7)−0.0043 (7)0.0012 (6)−0.0013 (6)
C50.0253 (9)0.0304 (10)0.0267 (8)−0.0014 (8)0.0024 (7)0.0034 (7)
C60.0255 (9)0.0277 (9)0.0266 (8)−0.0010 (8)0.0024 (8)0.0026 (7)
C70.0252 (9)0.0312 (10)0.0315 (9)−0.0004 (8)−0.0011 (8)−0.0018 (8)
C80.0376 (11)0.0409 (12)0.0360 (10)−0.0041 (10)0.0027 (9)−0.0055 (9)
C90.0417 (12)0.0642 (16)0.0445 (11)0.0043 (12)0.0035 (10)−0.0207 (12)
C100.0533 (15)0.0482 (14)0.0628 (15)0.0179 (12)−0.0107 (13)−0.0232 (12)
C110.0741 (18)0.0294 (12)0.0707 (17)0.0106 (12)−0.0103 (15)−0.0008 (12)
C120.0514 (13)0.0342 (11)0.0442 (11)0.0028 (10)0.0044 (10)0.0044 (10)
C130.0248 (9)0.0471 (12)0.0384 (10)−0.0031 (9)0.0016 (8)0.0015 (10)
C140.0386 (10)0.0299 (10)0.0349 (9)−0.0052 (9)0.0028 (9)−0.0033 (8)
C150.0278 (10)0.0379 (11)0.0249 (8)0.0029 (8)−0.0018 (7)−0.0026 (8)
O160.0390 (8)0.0533 (9)0.0385 (7)−0.0053 (8)0.0051 (6)−0.0169 (7)
C170.0302 (10)0.0612 (14)0.0272 (9)−0.0053 (10)0.0019 (8)−0.0060 (9)
C180.0665 (17)0.0539 (15)0.0453 (12)−0.0102 (14)0.0131 (12)0.0109 (11)
C190.0401 (14)0.089 (2)0.0800 (18)−0.0012 (15)0.0159 (14)−0.0317 (17)
O200.0253 (7)0.0426 (8)0.0324 (6)0.0028 (6)−0.0047 (5)−0.0008 (6)

Geometric parameters (Å, °)

O1—C21.336 (2)C11—C121.382 (3)
O1—C61.480 (2)C11—H110.95
C2—O201.196 (2)C12—H120.95
C2—N31.400 (2)C13—H13A0.98
N3—C151.413 (2)C13—H13B0.98
N3—N41.429 (2)C13—H13C0.98
N4—C51.470 (2)C14—H14A0.98
N4—C141.475 (2)C14—H14B0.98
C5—C61.520 (2)C14—H14C0.98
C5—C131.528 (3)C15—O161.210 (2)
C5—H51C15—C171.491 (3)
C6—C71.499 (3)C17—C181.357 (4)
C6—H61C17—C191.447 (3)
C7—C81.382 (3)C18—H18A0.95
C7—C121.392 (3)C18—H18B0.95
C8—C91.388 (3)C19—H19A0.98
C8—H80.95C19—H19B0.98
C9—C101.371 (4)C19—H19C0.98
C9—H90.95C19—H19D0.98
C10—C111.375 (4)C19—H19E0.98
C10—H100.95C19—H19F0.98
C2—O1—C6124.71 (14)C5—C13—H13B109.5
O20—C2—O1119.58 (17)H13A—C13—H13B109.5
O20—C2—N3123.57 (17)C5—C13—H13C109.5
O1—C2—N3116.85 (15)H13A—C13—H13C109.5
C2—N3—C15123.02 (15)H13B—C13—H13C109.5
C2—N3—N4119.99 (14)N4—C14—H14A109.5
C15—N3—N4115.19 (14)N4—C14—H14B109.5
N3—N4—C5106.68 (14)H14A—C14—H14B109.5
N3—N4—C14108.80 (14)N4—C14—H14C109.5
C5—N4—C14115.71 (14)H14A—C14—H14C109.5
N4—C5—C6109.45 (14)H14B—C14—H14C109.5
N4—C5—C13110.80 (16)O16—C15—N3119.08 (18)
C6—C5—C13111.93 (15)O16—C15—C17122.15 (18)
N4—C5—H5108.2N3—C15—C17118.67 (17)
C6—C5—H5108.2C18—C17—C19123.9 (3)
C13—C5—H5108.2C18—C17—C15120.9 (2)
O1—C6—C7107.77 (14)C19—C17—C15114.9 (2)
O1—C6—C5108.91 (14)C17—C18—H18A120
C7—C6—C5116.28 (15)C17—C18—H18B120
O1—C6—H6107.9H18A—C18—H18B120
C7—C6—H6107.9C17—C19—H19A109.5
C5—C6—H6107.9C17—C19—H19B109.5
C8—C7—C12118.74 (19)H19A—C19—H19B109.5
C8—C7—C6119.06 (18)C17—C19—H19C109.5
C12—C7—C6122.18 (17)H19A—C19—H19C109.5
C7—C8—C9121.1 (2)H19B—C19—H19C109.5
C7—C8—H8119.4C17—C19—H19D109.5
C9—C8—H8119.4H19A—C19—H19D141.1
C10—C9—C8119.5 (2)H19B—C19—H19D56.3
C10—C9—H9120.3H19C—C19—H19D56.3
C8—C9—H9120.3C17—C19—H19E109.5
C9—C10—C11120.0 (2)H19A—C19—H19E56.3
C9—C10—H10120H19B—C19—H19E141.1
C11—C10—H10120H19C—C19—H19E56.3
C10—C11—C12120.8 (2)H19D—C19—H19E109.5
C10—C11—H11119.6C17—C19—H19F109.5
C12—C11—H11119.6H19A—C19—H19F56.3
C11—C12—C7119.8 (2)H19B—C19—H19F56.3
C11—C12—H12120.1H19C—C19—H19F141.1
C7—C12—H12120.1H19D—C19—H19F109.5
C5—C13—H13A109.5H19E—C19—H19F109.5
C6—O1—C2—O20−175.30 (16)C5—C6—C7—C8122.65 (19)
C6—O1—C2—N35.1 (3)O1—C6—C7—C1266.8 (2)
O20—C2—N3—C15−4.2 (3)C5—C6—C7—C12−55.7 (2)
O1—C2—N3—C15175.31 (16)C12—C7—C8—C91.1 (3)
O20—C2—N3—N4159.76 (17)C6—C7—C8—C9−177.33 (19)
O1—C2—N3—N4−20.7 (2)C7—C8—C9—C10−0.2 (3)
C2—N3—N4—C550.5 (2)C8—C9—C10—C11−0.9 (4)
C15—N3—N4—C5−144.27 (15)C9—C10—C11—C121.1 (4)
C2—N3—N4—C14−74.94 (19)C10—C11—C12—C7−0.2 (4)
C15—N3—N4—C1490.25 (17)C8—C7—C12—C11−0.9 (3)
N3—N4—C5—C6−64.27 (17)C6—C7—C12—C11177.5 (2)
C14—N4—C5—C656.91 (19)C2—N3—C15—O16150.77 (18)
N3—N4—C5—C13171.82 (15)N4—N3—C15—O16−13.9 (3)
C14—N4—C5—C13−67.0 (2)C2—N3—C15—C17−32.8 (3)
C2—O1—C6—C7−147.65 (16)N4—N3—C15—C17162.50 (16)
C2—O1—C6—C5−20.7 (2)O16—C15—C17—C18130.5 (2)
N4—C5—C6—O150.02 (18)N3—C15—C17—C18−45.8 (3)
C13—C5—C6—O1173.25 (16)O16—C15—C17—C19−43.4 (3)
N4—C5—C6—C7171.95 (15)N3—C15—C17—C19140.3 (2)
C13—C5—C6—C7−64.8 (2)O20—C2—C15—O16132.4 (3)
O1—C6—C7—C8−114.81 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2116).

References

  • Bruker (2003). SAINT-Plus andSMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem.69, 727–734. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem.67, 8871–8876. [PubMed]
  • Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett.4, 3739–3742. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.
  • Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem.69, 714–718. [PubMed]
  • Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.
  • Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem.11, 357–361. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography