PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1073.
Published online 2008 May 14. doi:  10.1107/S160053680801386X
PMCID: PMC2961592

3,4-Dihydroxy­benzaldehyde thio­semi­carbazone

Abstract

The asymmetric unit of the title compound, C8H9N3O2S, contains three independent mol­ecules which are stacked approximately over each other. In the crystal structure, centrosymmetric pairs of mol­ecules are formed through inter­molecular hydr­oxy–hydr­oxy O—H(...)O and hydr­oxy–sulfur O—H(...)S hydrogen bonds which are, in turn, linked into a two-dimensional network by N—H(...)O(hydr­oxy) hydrogen bonds.

Related literature

For the structure of 3,4-dihydroxy­benzaldehyde 4-phenyl­thio­semicarbazone, see: Swesi et al. (2006 [triangle]). For some metal complexes of the ligand, see: Zhu et al. (1991 [triangle], 1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1073-scheme1.jpg

Experimental

Crystal data

  • C8H9N3O2S
  • M r = 211.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1073-efi1.jpg
  • a = 10.657 (2) Å
  • b = 11.794 (2) Å
  • c = 12.356 (2) Å
  • α = 111.657 (2)°
  • β = 104.082 (2)°
  • γ = 90.929 (2)°
  • V = 1390.2 (4) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 100 (2) K
  • 0.20 × 0.18 × 0.04 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.938, T max = 0.987
  • 8792 measured reflections
  • 6298 independent reflections
  • 3727 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.189
  • S = 1.01
  • 6298 reflections
  • 397 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801386X/lh2626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801386X/lh2626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (P0265/2007A) for supporting this study. KWT thanks the Ministry of Higher Education for a SLAI scholarship in this research.

supplementary crystallographic information

Comment

A previous study of Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides describes the 3,4-dihydroxybenzaldehyde derivative, which crystallizes as a hemihydrate. The compound features extensive hydrogen bonds (Swesi et al., 2006). The condensation product of the reaction between thiosemicarbazide and 3,4-dihydroxybenzaldehyde has an amino –NH2 group in place of the phenyl group. In the crystal structure, a molecule is linked to an adjacent molecule by a hydrogen bond [O–H3-hydroxy···O4-hydroxy]; it is linked to another adjacent molecule by another hydrogen bond [O–H4-hydroxy···S]. The structure is consolidated into a two-dimensional network motif by a NterminalH···O4-hydroxy hydrogen bond. The asymmetric unit features three molecules that are approximately stacked over each other (Fig. 1).

Experimental

Thiosemicarbazide (0.09 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in an ethanol/water mixture (20/5 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C). The amino H-atoms were similarly treated (N–H 0.88 Å). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H 0.85±0.01 Å; their temperature factors were tied by a factor of 1.5.

Figures

Fig. 1.
Thermal ellipsoid (Barbour, 2001) plot of the three independent molecules of C14H13N3O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Crystal data

C8H9N3O2SZ = 6
Mr = 211.24F000 = 660
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.657 (2) ÅCell parameters from 1478 reflections
b = 11.794 (2) Åθ = 2.7–27.8º
c = 12.356 (2) ŵ = 0.33 mm1
α = 111.657 (2)ºT = 100 (2) K
β = 104.082 (2)ºBlock, yellow
γ = 90.929 (2)º0.20 × 0.18 × 0.04 mm
V = 1390.2 (4) Å3

Data collection

Bruker SMART APEX diffractometer6298 independent reflections
Radiation source: fine-focus sealed tube3727 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.938, Tmax = 0.987k = −15→9
8792 measured reflectionsl = −14→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189  w = 1/[σ2(Fo2) + (0.1004P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6298 reflectionsΔρmax = 0.51 e Å3
397 parametersΔρmin = −0.39 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.84547 (10)0.94314 (8)0.21803 (8)0.0401 (3)
S20.45653 (10)0.85179 (8)0.31556 (7)0.0359 (2)
S30.10237 (10)0.74686 (8)0.41416 (8)0.0390 (3)
O10.7414 (3)0.5896 (2)0.7057 (2)0.0440 (7)
H1O0.750 (4)0.566 (4)0.763 (3)0.066*
O20.7519 (2)0.7405 (2)0.9368 (2)0.0333 (6)
H2O0.769 (4)0.797 (3)1.0057 (17)0.050*
O30.4715 (4)0.5066 (2)0.8312 (2)0.0615 (9)
H3O0.476 (5)0.496 (5)0.895 (3)0.092*
O40.4659 (3)0.6536 (2)1.05646 (19)0.0359 (6)
H4O0.464 (4)0.710 (3)1.122 (2)0.054*
O50.2270 (3)0.4329 (2)0.9629 (2)0.0441 (7)
H5O0.232 (4)0.426 (4)1.029 (2)0.066*
O60.1658 (3)0.5600 (2)1.1704 (2)0.0370 (6)
H6O0.152 (4)0.609 (3)1.235 (2)0.056*
N10.7685 (3)0.7537 (3)0.2628 (2)0.0407 (8)
H1N10.74860.72100.31090.049*
H1N20.76220.70720.18680.049*
N20.8145 (3)0.9368 (2)0.4209 (2)0.0328 (7)
H2N0.83321.01720.45200.039*
N30.7922 (3)0.8755 (2)0.4912 (2)0.0316 (6)
N40.4570 (3)0.6598 (3)0.3786 (3)0.0438 (8)
H4N10.45310.62590.43050.053*
H4N20.46370.61410.30610.053*
N50.4424 (3)0.8421 (2)0.5209 (2)0.0294 (6)
H5N0.43790.92180.54600.035*
N60.4390 (3)0.7808 (2)0.5960 (2)0.0282 (6)
N70.1429 (3)0.5636 (3)0.4892 (3)0.0470 (9)
H7N10.14570.53090.54310.056*
H7N20.16070.52100.42050.056*
N80.0866 (3)0.7341 (3)0.6182 (2)0.0334 (7)
H8N0.06170.80820.63700.040*
N90.1000 (3)0.6760 (2)0.6982 (2)0.0299 (6)
C10.8075 (3)0.8720 (3)0.3043 (3)0.0300 (7)
C20.7942 (3)0.9415 (3)0.5994 (3)0.0306 (7)
H20.80721.02840.62580.037*
C30.7772 (3)0.8876 (3)0.6840 (3)0.0279 (7)
C40.7636 (3)0.7614 (3)0.6542 (3)0.0296 (7)
H40.76050.70700.57430.035*
C50.7545 (3)0.7147 (3)0.7389 (3)0.0293 (7)
C60.7597 (3)0.7934 (3)0.8565 (3)0.0257 (7)
C70.7714 (3)0.9180 (3)0.8871 (3)0.0319 (8)
H7C0.77370.97190.96700.038*
C80.7799 (3)0.9652 (3)0.8013 (3)0.0327 (8)
H80.78751.05160.82280.039*
C90.4526 (3)0.7787 (3)0.4095 (3)0.0273 (7)
C100.4204 (3)0.8443 (3)0.6983 (3)0.0288 (7)
H100.40540.92770.71640.035*
C110.4218 (3)0.7917 (3)0.7876 (3)0.0252 (7)
C120.4409 (3)0.6698 (3)0.7657 (3)0.0298 (7)
H120.44590.61640.68790.036*
C130.4526 (3)0.6261 (3)0.8557 (3)0.0321 (8)
C140.4480 (3)0.7039 (3)0.9711 (3)0.0257 (7)
C150.4243 (3)0.8234 (3)0.9921 (3)0.0316 (8)
H150.41720.87601.06940.038*
C160.4107 (3)0.8671 (3)0.9006 (3)0.0304 (7)
H160.39360.94950.91530.036*
C170.1122 (3)0.6761 (3)0.5111 (3)0.0306 (7)
C180.0760 (3)0.7363 (3)0.7984 (3)0.0286 (7)
H180.04650.81470.81200.034*
C190.0928 (3)0.6872 (3)0.8926 (3)0.0264 (7)
C200.1458 (3)0.5772 (3)0.8812 (3)0.0288 (7)
H200.16620.52950.80810.035*
C210.1686 (3)0.5376 (3)0.9745 (3)0.0291 (7)
C220.1375 (3)0.6051 (3)1.0814 (3)0.0270 (7)
C230.0804 (3)0.7116 (3)1.0922 (3)0.0295 (7)
H230.05560.75661.16370.035*
C240.0594 (3)0.7524 (3)0.9982 (3)0.0300 (7)
H240.02140.82641.00640.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0718 (7)0.0287 (5)0.0288 (5)0.0104 (4)0.0234 (4)0.0146 (4)
S20.0636 (6)0.0242 (4)0.0253 (4)0.0079 (4)0.0172 (4)0.0123 (4)
S30.0631 (6)0.0330 (5)0.0286 (5)0.0124 (4)0.0187 (4)0.0164 (4)
O10.083 (2)0.0205 (12)0.0354 (14)0.0112 (13)0.0242 (14)0.0123 (11)
O20.0527 (15)0.0269 (13)0.0263 (12)0.0067 (11)0.0144 (11)0.0144 (10)
O30.137 (3)0.0278 (15)0.0344 (15)0.0361 (17)0.0385 (18)0.0173 (13)
O40.0637 (17)0.0257 (13)0.0238 (12)0.0131 (12)0.0166 (12)0.0123 (10)
O50.083 (2)0.0266 (13)0.0343 (14)0.0200 (13)0.0278 (14)0.0167 (12)
O60.0633 (17)0.0276 (13)0.0252 (12)0.0146 (12)0.0162 (12)0.0127 (11)
N10.075 (2)0.0255 (16)0.0245 (15)0.0053 (15)0.0198 (15)0.0091 (13)
N20.0565 (19)0.0214 (14)0.0249 (14)0.0070 (13)0.0161 (13)0.0105 (12)
N30.0492 (18)0.0255 (15)0.0270 (14)0.0069 (13)0.0133 (13)0.0156 (12)
N40.085 (3)0.0232 (16)0.0285 (16)0.0122 (16)0.0230 (16)0.0106 (13)
N50.0500 (18)0.0194 (13)0.0235 (14)0.0081 (12)0.0140 (12)0.0107 (11)
N60.0444 (17)0.0221 (14)0.0230 (13)0.0032 (12)0.0105 (12)0.0131 (11)
N70.088 (3)0.0285 (17)0.0371 (17)0.0156 (17)0.0319 (17)0.0165 (14)
N80.0529 (19)0.0271 (15)0.0302 (15)0.0141 (13)0.0172 (13)0.0179 (13)
N90.0426 (17)0.0239 (14)0.0293 (14)0.0056 (12)0.0133 (12)0.0147 (12)
C10.043 (2)0.0262 (17)0.0261 (17)0.0123 (15)0.0121 (15)0.0143 (15)
C20.044 (2)0.0221 (16)0.0274 (17)0.0042 (15)0.0093 (15)0.0119 (14)
C30.0387 (19)0.0247 (17)0.0249 (16)0.0075 (14)0.0106 (14)0.0134 (14)
C40.042 (2)0.0221 (16)0.0261 (17)0.0081 (14)0.0122 (14)0.0087 (14)
C50.0412 (19)0.0190 (16)0.0316 (17)0.0082 (14)0.0128 (15)0.0119 (14)
C60.0326 (18)0.0267 (17)0.0235 (16)0.0092 (14)0.0116 (13)0.0132 (14)
C70.050 (2)0.0246 (17)0.0223 (16)0.0063 (15)0.0118 (15)0.0086 (14)
C80.049 (2)0.0179 (16)0.0316 (18)0.0037 (15)0.0121 (16)0.0094 (14)
C90.0363 (18)0.0234 (17)0.0245 (16)0.0080 (14)0.0089 (14)0.0111 (14)
C100.0357 (19)0.0256 (17)0.0293 (17)0.0079 (14)0.0114 (14)0.0137 (14)
C110.0315 (17)0.0240 (16)0.0250 (16)0.0059 (13)0.0099 (13)0.0133 (14)
C120.046 (2)0.0250 (17)0.0211 (15)0.0092 (15)0.0134 (14)0.0092 (14)
C130.050 (2)0.0209 (16)0.0306 (17)0.0120 (15)0.0156 (15)0.0126 (14)
C140.0371 (18)0.0245 (16)0.0211 (15)0.0062 (14)0.0111 (13)0.0128 (13)
C150.047 (2)0.0236 (17)0.0259 (17)0.0085 (15)0.0163 (15)0.0074 (14)
C160.048 (2)0.0191 (16)0.0296 (17)0.0078 (14)0.0133 (15)0.0132 (14)
C170.0397 (19)0.0259 (17)0.0288 (17)0.0040 (15)0.0122 (15)0.0116 (15)
C180.0333 (18)0.0267 (17)0.0289 (17)0.0061 (14)0.0096 (14)0.0131 (14)
C190.0337 (18)0.0221 (16)0.0242 (16)0.0019 (13)0.0079 (13)0.0098 (13)
C200.042 (2)0.0212 (16)0.0262 (16)0.0048 (14)0.0140 (14)0.0094 (14)
C210.0408 (19)0.0205 (16)0.0300 (17)0.0070 (14)0.0141 (14)0.0111 (14)
C220.0361 (18)0.0240 (16)0.0242 (16)0.0036 (14)0.0103 (14)0.0115 (14)
C230.0405 (19)0.0252 (17)0.0245 (16)0.0092 (15)0.0131 (14)0.0084 (14)
C240.0375 (19)0.0248 (17)0.0281 (17)0.0067 (14)0.0089 (14)0.0103 (14)

Geometric parameters (Å, °)

S1—C11.693 (3)N9—C181.270 (4)
S2—C91.689 (3)C2—C31.453 (4)
S3—C171.680 (3)C2—H20.9500
O1—C51.372 (4)C3—C41.391 (4)
O1—H1O0.837 (10)C3—C81.393 (4)
O2—C61.369 (4)C4—C51.372 (4)
O2—H2O0.840 (10)C4—H40.9500
O3—C131.358 (4)C5—C61.392 (4)
O3—H3O0.836 (10)C6—C71.371 (4)
O4—C141.367 (4)C7—C81.387 (4)
O4—H4O0.841 (10)C7—H7C0.9500
O5—C211.368 (4)C8—H80.9500
O5—H5O0.838 (10)C10—C111.450 (4)
O6—C221.364 (4)C10—H100.9500
O6—H6O0.844 (10)C11—C161.385 (4)
N1—C11.316 (4)C11—C121.390 (4)
N1—H1N10.8800C12—C131.369 (4)
N1—H1N20.8800C12—H120.9500
N2—C11.341 (4)C13—C141.396 (4)
N2—N31.375 (3)C14—C151.375 (4)
N2—H2N0.8800C15—C161.385 (4)
N3—C21.269 (4)C15—H150.9500
N4—C91.316 (4)C16—H160.9500
N4—H4N10.8800C18—C191.457 (4)
N4—H4N20.8800C18—H180.9500
N5—C91.335 (4)C19—C241.384 (4)
N5—N61.377 (3)C19—C201.397 (4)
N5—H5N0.8800C20—C211.368 (4)
N6—C101.276 (4)C20—H200.9500
N7—C171.316 (4)C21—C221.390 (4)
N7—H7N10.8800C22—C231.380 (4)
N7—H7N20.8800C23—C241.386 (4)
N8—C171.344 (4)C23—H230.9500
N8—N91.380 (3)C24—H240.9500
N8—H8N0.8800
C5—O1—H1O115 (3)C3—C8—H8119.6
C6—O2—H2O107 (3)N4—C9—N5116.7 (3)
C13—O3—H3O106 (4)N4—C9—S2123.5 (2)
C14—O4—H4O107 (3)N5—C9—S2119.8 (2)
C21—O5—H5O103 (3)N6—C10—C11121.2 (3)
C22—O6—H6O112 (3)N6—C10—H10119.4
C1—N1—H1N1120.0C11—C10—H10119.4
C1—N1—H1N2120.0C16—C11—C12119.0 (3)
H1N1—N1—H1N2120.0C16—C11—C10118.9 (3)
C1—N2—N3118.9 (3)C12—C11—C10122.0 (3)
C1—N2—H2N120.5C13—C12—C11120.3 (3)
N3—N2—H2N120.5C13—C12—H12119.8
C2—N3—N2116.4 (3)C11—C12—H12119.8
C9—N4—H4N1120.0O3—C13—C12118.8 (3)
C9—N4—H4N2120.0O3—C13—C14120.7 (3)
H4N1—N4—H4N2120.0C12—C13—C14120.5 (3)
C9—N5—N6118.9 (3)O4—C14—C15124.2 (3)
C9—N5—H5N120.6O4—C14—C13116.4 (3)
N6—N5—H5N120.6C15—C14—C13119.4 (3)
C10—N6—N5116.1 (3)C14—C15—C16120.0 (3)
C17—N7—H7N1120.0C14—C15—H15120.0
C17—N7—H7N2120.0C16—C15—H15120.0
H7N1—N7—H7N2120.0C15—C16—C11120.6 (3)
C17—N8—N9119.0 (3)C15—C16—H16119.7
C17—N8—H8N120.5C11—C16—H16119.7
N9—N8—H8N120.5N7—C17—N8115.9 (3)
C18—N9—N8115.9 (3)N7—C17—S3124.0 (3)
N1—C1—N2116.6 (3)N8—C17—S3120.0 (3)
N1—C1—S1123.3 (2)N9—C18—C19121.1 (3)
N2—C1—S1120.1 (2)N9—C18—H18119.5
N3—C2—C3121.7 (3)C19—C18—H18119.5
N3—C2—H2119.2C24—C19—C20118.6 (3)
C3—C2—H2119.2C24—C19—C18119.6 (3)
C4—C3—C8118.5 (3)C20—C19—C18121.8 (3)
C4—C3—C2122.7 (3)C21—C20—C19120.4 (3)
C8—C3—C2118.8 (3)C21—C20—H20119.8
C5—C4—C3120.7 (3)C19—C20—H20119.8
C5—C4—H4119.7O5—C21—C20119.0 (3)
C3—C4—H4119.7O5—C21—C22120.3 (3)
O1—C5—C4118.7 (3)C20—C21—C22120.6 (3)
O1—C5—C6121.0 (3)O6—C22—C23123.8 (3)
C4—C5—C6120.3 (3)O6—C22—C21116.6 (3)
O2—C6—C7123.0 (3)C23—C22—C21119.6 (3)
O2—C6—C5117.1 (3)C22—C23—C24119.5 (3)
C7—C6—C5119.9 (3)C22—C23—H23120.2
C6—C7—C8119.8 (3)C24—C23—H23120.2
C6—C7—H7C120.1C19—C24—C23121.2 (3)
C8—C7—H7C120.1C19—C24—H24119.4
C7—C8—C3120.8 (3)C23—C24—H24119.4
C7—C8—H8119.6
C1—N2—N3—C2−176.9 (3)C11—C12—C13—C14−1.3 (5)
C9—N5—N6—C10−175.5 (3)O3—C13—C14—O41.2 (5)
C17—N8—N9—C18179.2 (3)C12—C13—C14—O4−177.4 (3)
N3—N2—C1—N15.5 (5)O3—C13—C14—C15−177.8 (3)
N3—N2—C1—S1−175.4 (2)C12—C13—C14—C153.7 (5)
N2—N3—C2—C3−177.5 (3)O4—C14—C15—C16178.4 (3)
N3—C2—C3—C42.9 (5)C13—C14—C15—C16−2.7 (5)
N3—C2—C3—C8−179.7 (3)C14—C15—C16—C11−0.5 (5)
C8—C3—C4—C5−0.8 (5)C12—C11—C16—C152.9 (5)
C2—C3—C4—C5176.6 (3)C10—C11—C16—C15−173.6 (3)
C3—C4—C5—O1−179.9 (3)N9—N8—C17—N73.0 (5)
C3—C4—C5—C6−0.4 (5)N9—N8—C17—S3−177.6 (2)
O1—C5—C6—O20.4 (5)N8—N9—C18—C19−177.0 (3)
C4—C5—C6—O2−179.1 (3)N9—C18—C19—C24−176.7 (3)
O1—C5—C6—C7−179.3 (3)N9—C18—C19—C205.3 (5)
C4—C5—C6—C71.2 (5)C24—C19—C20—C21−2.5 (5)
O2—C6—C7—C8179.5 (3)C18—C19—C20—C21175.5 (3)
C5—C6—C7—C8−0.9 (5)C19—C20—C21—O5−176.6 (3)
C6—C7—C8—C3−0.3 (5)C19—C20—C21—C221.1 (5)
C4—C3—C8—C71.1 (5)O5—C21—C22—O6−1.2 (5)
C2—C3—C8—C7−176.4 (3)C20—C21—C22—O6−178.8 (3)
N6—N5—C9—N40.9 (5)O5—C21—C22—C23179.0 (3)
N6—N5—C9—S2179.8 (2)C20—C21—C22—C231.4 (5)
N5—N6—C10—C11−176.7 (3)O6—C22—C23—C24177.8 (3)
N6—C10—C11—C16175.3 (3)C21—C22—C23—C24−2.5 (5)
N6—C10—C11—C12−1.1 (5)C20—C19—C24—C231.4 (5)
C16—C11—C12—C13−2.0 (5)C18—C19—C24—C23−176.6 (3)
C10—C11—C12—C13174.4 (3)C22—C23—C24—C191.0 (5)
C11—C12—C13—O3−179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···O6i0.84 (1)2.07 (3)2.784 (3)143 (4)
O2—H2o···S1ii0.84 (1)2.47 (1)3.300 (2)171 (4)
N1—H1n2···O5iii0.882.002.856 (4)163
O3—H3o···O4i0.84 (1)2.11 (4)2.732 (3)130 (4)
O4—H4o···S2ii0.84 (1)2.38 (1)3.219 (2)174 (4)
N4—H4n2···O3iii0.882.052.900 (4)162
O5—H5o···O2i0.84 (1)2.16 (4)2.742 (3)127 (4)
O6—H6o···S3ii0.84 (1)2.40 (1)3.244 (2)177 (4)
N7—H7n2···O1iii0.882.132.981 (4)161

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2626).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.
  • Westrip, S. P. (2008). publCIF In preparation.
  • Zhu, X.-D., Wang, C.-G., Le, Z.-F., Mei, S.-Y., Yen, Z.-H. & Wu, Z.-S. (1991). Synth. React. Inorg. Met. Org. Chem.21, 1365–1373.
  • Zhu, X.-D., Wang, C.-G., Lu, Z.-P. & Dang, Y.-L. (1997). Transition Met. Chem.22, 9–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography