PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m842.
Published online 2008 May 30. doi:  10.1107/S1600536808015389
PMCID: PMC2961589

Bis{(E)-2,4-diiodo-6-[(2-morpholinoeth­yl)imino­meth­yl]phenolato}nickel(II)

Abstract

In the title mononuclear nickel(II) complex, [Ni(C13H15I2N2O2)2], the NiII atom is four-coordinated in a tetra­hedral geometry by the imine N and phenolate O atoms of the two Schiff base ligands. The O and N atoms of the morpholine substituent in the ligand are not involved in coordination to the Ni atom.

Related literature

For related structures, see: Cheng et al. (2007 [triangle]); Li et al. (2007 [triangle]); Qiu et al. (2006 [triangle]); Shi et al. (2007 [triangle]); Wang et al. (2005 [triangle]); Zhu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m842-scheme1.jpg

Experimental

Crystal data

  • [Ni(C13H15I2N2O2)2]
  • M r = 1028.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m842-efi1.jpg
  • a = 9.940 (2) Å
  • b = 11.371 (2) Å
  • c = 14.526 (3) Å
  • α = 87.138 (3)°
  • β = 79.028 (4)°
  • γ = 76.197 (4)°
  • V = 1565.3 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.60 mm−1
  • T = 298 (2) K
  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.465, T max = 0.507
  • 6131 measured reflections
  • 6081 independent reflections
  • 4486 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.154
  • S = 1.07
  • 6081 reflections
  • 340 parameters
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −1.19 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015389/sj2504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015389/sj2504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors appreciate the generous financial support of this work by the Chinese Funds for Zhicheng Project (No. 2006BAC02A11) and Wuhan Yindao project (No. 20066009138-07).

supplementary crystallographic information

Comment

As part of our ongoing interest in the structure of nickel(II) complexes (Zhu et al., 2003), we report herein the crystal structure of the title compound, a new mononuclear nickel(II) complex, (I), Fig. 1, derived from the Schiff base ligand 2,4-diiodo-6-[(2-morpholin-4-ylethylimino)methyl]phenol.

The NiII atom in (I) is four-coordinate in a tetrahedral geometry, binding to the imine N and phenolate O atoms of the two Schiff base ligands. The O and N atoms of the morpholine substituent in the ligand lie well away from the coordination sphere of the Ni atom. The coordinate bond values (Table 1) are comparable to values observed in other similar nickel(II) complexes (Shi et al., 2007; Li et al., 2007; Cheng et al., 2007; Qiu et al., 2006; Wang et al., 2005).

Experimental

3,5-Diiodosalicylaldehyde (74.8 mg, 0.2 mmol), 2-morpholin-4-ylethylamine (26.0 mg, 0.2 mmol), and NiCl2.6H2O (23.8 mg, 0.1 mmol) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding green crystals.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ni(C13H15I2N2O2)2]Z = 2
Mr = 1028.85F000 = 972
Triclinic, P1Dx = 2.183 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.940 (2) ÅCell parameters from 3273 reflections
b = 11.371 (2) Åθ = 2.4–25.3º
c = 14.526 (3) ŵ = 4.60 mm1
α = 87.138 (3)ºT = 298 (2) K
β = 79.028 (4)ºBlock, green
γ = 76.197 (4)º0.17 × 0.15 × 0.15 mm
V = 1565.3 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer6081 independent reflections
Radiation source: fine-focus sealed tube4486 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 298(2) Kθmax = 26.0º
ω/2θ scansθmin = 1.4º
Absorption correction: psi scan(North et al., 1968)h = −11→12
Tmin = 0.465, Tmax = 0.507k = −13→14
6131 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0708P)2 + 8.6966P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6081 reflectionsΔρmax = 1.01 e Å3
340 parametersΔρmin = −1.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni0.67459 (12)0.74611 (9)0.74968 (7)0.0370 (3)
I11.03986 (8)0.21944 (6)1.02656 (5)0.0587 (2)
I21.08919 (7)0.41240 (6)0.63145 (5)0.0566 (2)
I30.89016 (8)1.25985 (6)0.44905 (5)0.0581 (2)
I40.86000 (8)1.08336 (6)0.84580 (5)0.0544 (2)
O10.2528 (9)1.0772 (9)0.6949 (6)0.088 (3)
O20.8403 (7)0.6056 (5)0.7347 (4)0.0476 (15)
O30.3977 (9)0.4099 (8)0.8193 (6)0.083 (3)
O40.7534 (7)0.8868 (5)0.7567 (4)0.0468 (15)
N10.4262 (9)0.9357 (7)0.8185 (5)0.0509 (19)
N20.6094 (8)0.7093 (7)0.8847 (5)0.0479 (18)
N30.5530 (8)0.5511 (7)0.6897 (5)0.0477 (18)
N40.6484 (8)0.7785 (6)0.6166 (5)0.0416 (16)
C10.8091 (9)0.5352 (7)0.8924 (6)0.0405 (19)
C20.8775 (9)0.5295 (7)0.7959 (6)0.0363 (18)
C30.9936 (9)0.4299 (8)0.7732 (6)0.043 (2)
C41.0432 (9)0.3416 (8)0.8368 (6)0.043 (2)
H41.11950.27740.81700.051*
C50.9773 (10)0.3513 (8)0.9290 (7)0.046 (2)
C60.8621 (10)0.4491 (8)0.9557 (6)0.048 (2)
H60.81930.45661.01860.057*
C70.6868 (10)0.6243 (8)0.9306 (6)0.046 (2)
H70.65790.62250.99530.055*
C80.4785 (12)0.7862 (10)0.9417 (7)0.064 (3)
H8A0.39710.75720.93400.077*
H8B0.48550.77931.00760.077*
C90.4594 (12)0.9162 (10)0.9117 (7)0.061 (3)
H9A0.38400.96560.95600.073*
H9B0.54520.94210.91300.073*
C100.4274 (12)1.0621 (10)0.7914 (9)0.068 (3)
H10A0.52041.07510.79120.081*
H10B0.36081.11590.83760.081*
C110.3903 (16)1.0927 (13)0.6976 (10)0.092 (4)
H11A0.39381.17610.68230.111*
H11B0.45881.04120.65090.111*
C120.2531 (14)0.9555 (13)0.7185 (9)0.080 (4)
H12A0.32350.90360.67300.096*
H12B0.16200.94130.71450.096*
C130.2827 (13)0.9214 (11)0.8133 (7)0.067 (3)
H13A0.27740.83800.82670.080*
H13B0.21300.97260.85970.080*
C140.7537 (9)0.9542 (8)0.5987 (6)0.0408 (19)
C150.7930 (9)1.0375 (8)0.5305 (7)0.044 (2)
H150.78181.02940.46920.053*
C160.8466 (10)1.1292 (8)0.5514 (7)0.045 (2)
C170.8658 (9)1.1437 (8)0.6402 (6)0.043 (2)
H170.90101.20790.65460.052*
C180.8319 (10)1.0611 (8)0.7084 (6)0.045 (2)
C190.7810 (8)0.9604 (7)0.6922 (6)0.0364 (18)
C200.6925 (10)0.8632 (8)0.5680 (6)0.043 (2)
H200.68410.86680.50520.052*
C210.5820 (9)0.7051 (8)0.5668 (6)0.043
H21A0.61210.71320.49970.051*
H21B0.48040.73440.58130.051*
C220.6216 (11)0.5733 (10)0.5948 (7)0.061
H22A0.59540.52460.55130.074*
H22B0.72300.54850.59040.074*
C230.4055 (11)0.5588 (11)0.6960 (8)0.064 (3)
H23A0.39250.50250.65230.077*
H23B0.35910.64000.67910.077*
C240.3403 (14)0.5295 (13)0.7941 (9)0.078 (4)
H24A0.35580.58460.83780.094*
H24B0.23940.54110.79850.094*
C250.6143 (11)0.4272 (9)0.7168 (8)0.061 (3)
H25A0.71430.41790.71520.073*
H25B0.60380.37130.67170.073*
C260.5451 (14)0.3955 (12)0.8137 (10)0.081 (4)
H26A0.58730.31240.82860.098*
H26B0.56120.44750.85950.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni0.0507 (6)0.0302 (5)0.0320 (5)−0.0192 (5)−0.0025 (5)0.0092 (4)
I10.0742 (5)0.0474 (4)0.0577 (4)−0.0181 (3)−0.0193 (3)0.0167 (3)
I20.0634 (4)0.0504 (4)0.0501 (4)−0.0206 (3)0.0121 (3)0.0055 (3)
I30.0732 (5)0.0503 (4)0.0565 (4)−0.0323 (3)−0.0088 (3)0.0215 (3)
I40.0700 (4)0.0545 (4)0.0467 (4)−0.0290 (3)−0.0126 (3)0.0029 (3)
O10.075 (6)0.094 (7)0.072 (6)0.014 (5)−0.004 (5)0.017 (5)
O20.061 (4)0.038 (3)0.040 (3)−0.014 (3)0.000 (3)0.009 (3)
O30.084 (6)0.088 (6)0.081 (6)−0.049 (5)0.003 (5)0.021 (5)
O40.067 (4)0.035 (3)0.040 (3)−0.024 (3)0.000 (3)0.008 (3)
N10.059 (5)0.050 (5)0.041 (4)−0.012 (4)−0.001 (4)−0.009 (4)
N20.054 (5)0.041 (4)0.040 (4)−0.005 (3)0.002 (3)0.007 (3)
N30.052 (5)0.048 (4)0.046 (4)−0.022 (4)−0.006 (4)0.010 (3)
N40.053 (4)0.037 (4)0.037 (4)−0.025 (3)0.004 (3)−0.001 (3)
C10.046 (5)0.032 (4)0.043 (5)−0.014 (4)−0.003 (4)0.007 (4)
C20.046 (5)0.033 (4)0.039 (4)−0.025 (4)−0.011 (4)0.010 (3)
C30.049 (5)0.036 (4)0.046 (5)−0.027 (4)0.005 (4)0.004 (4)
C40.044 (5)0.035 (4)0.046 (5)−0.011 (4)−0.002 (4)0.009 (4)
C50.060 (6)0.034 (5)0.050 (5)−0.019 (4)−0.017 (4)0.012 (4)
C60.060 (6)0.051 (5)0.034 (5)−0.022 (5)−0.008 (4)0.012 (4)
C70.064 (6)0.047 (5)0.029 (4)−0.022 (5)−0.003 (4)0.008 (4)
C80.069 (7)0.060 (6)0.045 (6)0.006 (5)0.006 (5)0.006 (5)
C90.071 (7)0.061 (6)0.047 (6)−0.011 (5)−0.003 (5)−0.018 (5)
C100.064 (7)0.052 (6)0.080 (8)−0.017 (5)0.010 (6)−0.007 (6)
C110.097 (11)0.076 (9)0.086 (10)−0.017 (8)0.021 (8)0.012 (7)
C120.074 (8)0.087 (9)0.076 (8)−0.010 (7)−0.016 (7)−0.021 (7)
C130.086 (8)0.074 (8)0.042 (6)−0.030 (6)−0.001 (5)−0.003 (5)
C140.051 (5)0.040 (5)0.037 (4)−0.026 (4)−0.005 (4)0.008 (4)
C150.045 (5)0.037 (5)0.048 (5)−0.011 (4)0.000 (4)0.000 (4)
C160.045 (5)0.034 (4)0.052 (5)−0.013 (4)0.006 (4)0.004 (4)
C170.049 (5)0.031 (4)0.050 (5)−0.015 (4)−0.010 (4)0.011 (4)
C180.055 (5)0.040 (5)0.040 (5)−0.020 (4)0.001 (4)−0.002 (4)
C190.028 (4)0.036 (4)0.044 (5)−0.011 (3)−0.001 (3)0.002 (4)
C200.056 (5)0.048 (5)0.032 (4)−0.022 (4)−0.013 (4)0.009 (4)
C210.0430.0430.043−0.010−0.0080.000
C220.0610.0610.061−0.014−0.0110.000
C230.059 (6)0.072 (7)0.057 (6)−0.015 (5)−0.009 (5)0.023 (6)
C240.079 (8)0.101 (10)0.063 (7)−0.055 (8)0.008 (6)0.008 (7)
C250.058 (6)0.051 (6)0.080 (8)−0.020 (5)−0.019 (6)0.006 (5)
C260.086 (9)0.068 (8)0.095 (10)−0.034 (7)−0.017 (7)0.029 (7)

Geometric parameters (Å, °)

Ni—O41.956 (6)C9—H9A0.9700
Ni—O21.989 (6)C9—H9B0.9700
Ni—N22.001 (7)C10—C111.483 (18)
Ni—N42.004 (7)C10—H10A0.9700
I1—C52.079 (8)C10—H10B0.9700
I2—C32.095 (9)C11—H11A0.9700
I3—C162.108 (8)C11—H11B0.9700
I4—C182.103 (9)C12—C131.477 (16)
O1—C121.408 (16)C12—H12A0.9700
O1—C111.427 (17)C12—H12B0.9700
O2—C21.254 (9)C13—H13A0.9700
O3—C241.403 (15)C13—H13B0.9700
O3—C261.422 (15)C14—C151.403 (11)
O4—C191.260 (10)C14—C191.442 (12)
N1—C91.448 (13)C14—C201.446 (12)
N1—C101.473 (13)C15—C161.349 (13)
N1—C131.490 (14)C15—H150.9300
N2—C71.322 (11)C16—C171.363 (13)
N2—C81.504 (12)C17—C181.382 (11)
N3—C231.433 (13)C17—H170.9300
N3—C221.456 (13)C18—C191.403 (12)
N3—C251.462 (12)C20—H200.9300
N4—C201.278 (10)C21—C221.511 (13)
N4—C211.469 (11)C21—H21A0.9700
C1—C61.390 (12)C21—H21B0.9700
C1—C71.422 (13)C22—H22A0.9700
C1—C21.435 (12)C22—H22B0.9700
C2—C31.411 (12)C23—C241.506 (14)
C3—C41.396 (12)C23—H23A0.9700
C4—C51.372 (13)C23—H23B0.9700
C4—H40.9300C24—H24A0.9700
C5—C61.401 (13)C24—H24B0.9700
C6—H60.9300C25—C261.512 (16)
C7—H70.9300C25—H25A0.9700
C8—C91.499 (15)C25—H25B0.9700
C8—H8A0.9700C26—H26A0.9700
C8—H8B0.9700C26—H26B0.9700
O4—Ni—O2104.7 (3)O1—C12—H12A108.9
O4—Ni—N2102.8 (3)C13—C12—H12A108.9
O2—Ni—N293.7 (3)O1—C12—H12B108.9
O4—Ni—N494.2 (3)C13—C12—H12B108.9
O2—Ni—N4101.5 (3)H12A—C12—H12B107.7
N2—Ni—N4153.5 (3)C12—C13—N1109.3 (9)
C12—O1—C11107.0 (9)C12—C13—H13A109.8
C2—O2—Ni127.5 (6)N1—C13—H13A109.8
C24—O3—C26108.3 (9)C12—C13—H13B109.8
C19—O4—Ni127.9 (6)N1—C13—H13B109.8
C9—N1—C10107.9 (9)H13A—C13—H13B108.3
C9—N1—C13113.4 (8)C15—C14—C19119.4 (8)
C10—N1—C13106.0 (8)C15—C14—C20116.3 (8)
C7—N2—C8116.5 (8)C19—C14—C20124.2 (7)
C7—N2—Ni121.5 (6)C16—C15—C14121.8 (9)
C8—N2—Ni121.6 (6)C16—C15—H15119.1
C23—N3—C22112.1 (8)C14—C15—H15119.1
C23—N3—C25106.1 (8)C15—C16—C17120.9 (8)
C22—N3—C25108.7 (8)C15—C16—I3120.5 (7)
C20—N4—C21115.2 (7)C17—C16—I3118.5 (6)
C20—N4—Ni121.8 (6)C16—C17—C18118.7 (8)
C21—N4—Ni123.0 (5)C16—C17—H17120.6
C6—C1—C7115.4 (8)C18—C17—H17120.6
C6—C1—C2119.8 (8)C17—C18—C19124.2 (8)
C7—C1—C2124.8 (7)C17—C18—I4119.0 (7)
O2—C2—C3121.0 (8)C19—C18—I4116.8 (6)
O2—C2—C1124.2 (8)O4—C19—C18121.7 (8)
C3—C2—C1114.8 (7)O4—C19—C14123.5 (7)
C4—C3—C2125.0 (8)C18—C19—C14114.6 (7)
C4—C3—I2119.0 (7)N4—C20—C14128.0 (8)
C2—C3—I2116.0 (6)N4—C20—H20116.0
C5—C4—C3118.8 (8)C14—C20—H20116.0
C5—C4—H4120.6N4—C21—C22110.7 (8)
C3—C4—H4120.6N4—C21—H21A109.5
C4—C5—C6118.8 (8)C22—C21—H21A109.5
C4—C5—I1120.9 (7)N4—C21—H21B109.5
C6—C5—I1120.2 (7)C22—C21—H21B109.5
C1—C6—C5122.9 (8)H21A—C21—H21B108.1
C1—C6—H6118.6N3—C22—C21112.3 (8)
C5—C6—H6118.6N3—C22—H22A109.2
N2—C7—C1127.5 (8)C21—C22—H22A109.2
N2—C7—H7116.3N3—C22—H22B109.2
C1—C7—H7116.3C21—C22—H22B109.2
C9—C8—N2110.8 (8)H22A—C22—H22B107.9
C9—C8—H8A109.5N3—C23—C24110.3 (9)
N2—C8—H8A109.5N3—C23—H23A109.6
C9—C8—H8B109.5C24—C23—H23A109.6
N2—C8—H8B109.5N3—C23—H23B109.6
H8A—C8—H8B108.1C24—C23—H23B109.6
N1—C9—C8112.4 (9)H23A—C23—H23B108.1
N1—C9—H9A109.1O3—C24—C23111.6 (11)
C8—C9—H9A109.1O3—C24—H24A109.3
N1—C9—H9B109.1C23—C24—H24A109.3
C8—C9—H9B109.1O3—C24—H24B109.3
H9A—C9—H9B107.9C23—C24—H24B109.3
N1—C10—C11112.3 (10)H24A—C24—H24B108.0
N1—C10—H10A109.2N3—C25—C26111.9 (9)
C11—C10—H10A109.2N3—C25—H25A109.2
N1—C10—H10B109.2C26—C25—H25A109.2
C11—C10—H10B109.2N3—C25—H25B109.2
H10A—C10—H10B107.9C26—C25—H25B109.2
O1—C11—C10111.2 (10)H25A—C25—H25B107.9
O1—C11—H11A109.4O3—C26—C25111.0 (10)
C10—C11—H11A109.4O3—C26—H26A109.4
O1—C11—H11B109.4C25—C26—H26A109.4
C10—C11—H11B109.4O3—C26—H26B109.4
H11A—C11—H11B108.0C25—C26—H26B109.4
O1—C12—C13113.6 (11)H26A—C26—H26B108.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2504).

References

  • Cheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem.60, 375–379.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.A24, 351–359.
  • Qiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289–m1290.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun.10, 404–406.
  • Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481–m1483.
  • Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777–m779.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography