PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m769.
Published online 2008 May 3. doi:  10.1107/S1600536808011811
PMCID: PMC2961583

Bis(2-dimethylamino-1,10-phenanthroline-κ2 N,N′)bis­(thio­cyanato-κN)nickel(II) methanol disolvate

Abstract

In the title complex, [Ni(NCS)2(C14H13N3)2]·2CH3OH, the NiII atom lies on a crystallographic twofold rotation axis and is in a slightly distorted octa­hedral NiN6 coordination environment. The crystal structure is stabilized by a combination of weak π–π stacking inter­actions between symmetry-related 1,10-phenanthroline ligands [centroi–centroid distance between benzene rings = 3.5936 (18) Å] and weak O—H(...)S, C—H(...)O and C—H(...)S hydrogen bonds between methanol and complex mol­ecules.

Related literature

For related literature, see: Zhang et al. (2006 [triangle]); Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m769-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C14H13N3)2]·2CH4O
  • M r = 685.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m769-efi2.jpg
  • a = 19.573 (3) Å
  • b = 11.452 (3) Å
  • c = 16.338 (3) Å
  • β = 117.693 (4)°
  • V = 3242.6 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 298 (2) K
  • 0.31 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.796, T max = 0.855
  • 8459 measured reflections
  • 3064 independent reflections
  • 2668 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.100
  • S = 1.05
  • 3064 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011811/lh2613sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011811/lh2613Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province of China for support (grant No. Y2007B26).

supplementary crystallographic information

Comment

The derivatives of 1,10-phenanthroline play a pivotal role in the area of modern coordination chemistry (Zhang et al. 2006) and a number of complexes have been reported with derivatives as ligands (Liu et al. 2008). Here we report the crystal structure of the title complex, (I), formed using 2-(dimethyl)amine-1,10-phenanthroline as a ligand.

The molecular structure of (I) is shown in Fig. 1. In the mononuclear complex, atom Ni1 is in a slightly distorted octahedral geometry (Table 1). There is a single π-π stacking interaction involving symmetry related 1,10-phenanthroline ligands, with the the relevant distances being Cg1···Cg1i = 3.5936 (18) Å and Cg1···Cg1iperp = 3.449 Å; α = 0.00° [symmetry code: (i) 1-x,-y,-z; Cg1 is the centroid of the C4—C9 ring; Cg1···Cg1perp is the perpendicular distance from ring Cg1 to ring Cg1i; α is the dihedral between the two ring planes]. In addition, the crystal structure contains weak O—H···S, C—H···O and C—H···S hydrogen bonds between methanol molecules and complex molecules [Fig. 2 and Table 2]. In addition to the π-π stacking interactions and the hydrogen bonds there is relatively close contact between the H atom of the hydroxyl and symmetry-related pyridine ring [H···Cg2 = 2.82, where Cg2 is the centroid of N1/C1—C5 ring]. The combination of the above interactions help stabilize the crystal structure.

Experimental

15 ml me thanol solution of Ni(ClO4).6H2O (0.2503 g, 0.684 mmol) was added into a 10 ml me thanol solution containing 2-(dimethl)amine-1,10-phenanthroline (0.1531 g, 0.686 mmol), and the mixed solution was stirred for a few minutes. Then 10 ml me thanol solution of NaSCN (0.1112 g, 1.37 mmol) was added into the mixed solution above. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement

H atom of hydroxyl was located in a difference Fourier map and refined as riding in its as found position with Uiso(H) = 1.5 Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for other H atoms) and refined as riding with Uiso = 1.5 Ueq(C) for methyl H and Uiso = 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
View of the molecular structure of complex (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level (methanol molecules are not shown). Primed atoms are related by the symmetry operator (-x+1, y, -z+1/2).
Fig. 2.
Part of the crystal structure showing hydrogen bonds between methanol molecules and complex molecules (dashed lines).

Crystal data

[Ni(NCS)2(C14H13N3)2]·2CH4OF000 = 1432
Mr = 685.50Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3100 reflections
a = 19.573 (3) Åθ = 2.4–27.8º
b = 11.452 (3) ŵ = 0.77 mm1
c = 16.338 (3) ÅT = 298 (2) K
β = 117.693 (4)ºBlock, green
V = 3242.6 (10) Å30.31 × 0.24 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3064 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 298(2) Kθmax = 25.7º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −18→23
Tmin = 0.796, Tmax = 0.855k = −12→13
8459 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0522P)2 + 2.7575P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3064 reflectionsΔρmax = 0.52 e Å3
210 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.38579 (14)−0.2002 (2)0.05726 (16)0.0324 (6)
H10.3846−0.27060.08500.039*
C20.33596 (15)−0.1849 (2)−0.03666 (17)0.0385 (6)
H20.3033−0.2451−0.07110.046*
C30.33558 (15)−0.0809 (3)−0.07755 (17)0.0371 (6)
H30.3013−0.0688−0.13960.045*
C40.38688 (14)0.0075 (2)−0.02593 (16)0.0310 (5)
C50.43824 (13)−0.01749 (19)0.06749 (15)0.0248 (5)
C60.49639 (13)0.06546 (19)0.12309 (15)0.0234 (5)
C70.38961 (16)0.1199 (2)−0.06162 (17)0.0358 (6)
H70.35620.1372−0.12310.043*
C80.43990 (15)0.2013 (2)−0.00747 (17)0.0359 (6)
H80.43910.2752−0.03140.043*
C90.49437 (14)0.1764 (2)0.08600 (16)0.0296 (5)
C100.54844 (15)0.2582 (2)0.14486 (18)0.0351 (6)
H100.54750.33440.12480.042*
C110.60188 (15)0.2262 (2)0.23065 (17)0.0336 (6)
H110.63660.28110.27010.040*
C120.60511 (14)0.10882 (19)0.26076 (16)0.0269 (5)
C140.69963 (14)−0.0403 (2)0.34968 (18)0.0340 (6)
H14A0.6624−0.09340.30640.051*
H14B0.7179−0.07000.41130.051*
H14C0.7422−0.03240.33620.051*
C150.71573 (17)0.1587 (2)0.40742 (18)0.0445 (7)
H15A0.74980.18850.38510.067*
H15B0.74550.12250.46660.067*
H15C0.68600.22160.41350.067*
C160.5917 (2)0.4773 (3)0.3971 (3)0.0682 (10)
H60.55320.53180.35770.096 (14)*
H90.59110.47280.45540.14 (2)*
H50.58090.40160.36850.129 (19)*
C170.59639 (13)−0.3261 (2)0.21965 (15)0.0258 (5)
N10.43477 (11)−0.11804 (16)0.10854 (12)0.0257 (4)
N20.55031 (11)0.03107 (15)0.20930 (12)0.0231 (4)
N30.56731 (12)−0.24797 (17)0.23466 (13)0.0290 (4)
N40.66394 (12)0.07266 (17)0.34233 (13)0.0305 (5)
Ni10.5000−0.12186 (3)0.25000.02153 (14)
O10.66464 (13)0.5147 (2)0.41138 (16)0.0681 (7)
H40.66880.49400.36580.102*
S10.63832 (4)−0.43760 (6)0.19758 (5)0.0419 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0360 (14)0.0320 (13)0.0322 (12)−0.0045 (11)0.0184 (11)−0.0052 (10)
C20.0362 (15)0.0467 (15)0.0341 (13)−0.0091 (12)0.0177 (12)−0.0138 (12)
C30.0300 (14)0.0549 (16)0.0236 (12)0.0040 (12)0.0102 (11)−0.0049 (11)
C40.0321 (14)0.0406 (14)0.0246 (12)0.0092 (11)0.0167 (11)0.0005 (10)
C50.0283 (12)0.0275 (12)0.0239 (11)0.0060 (10)0.0166 (10)0.0002 (9)
C60.0283 (12)0.0245 (11)0.0247 (11)0.0056 (9)0.0186 (10)0.0020 (9)
C70.0413 (15)0.0440 (15)0.0242 (12)0.0139 (12)0.0170 (11)0.0085 (11)
C80.0494 (17)0.0318 (13)0.0339 (13)0.0151 (12)0.0256 (13)0.0133 (11)
C90.0392 (14)0.0246 (12)0.0341 (12)0.0067 (10)0.0247 (12)0.0048 (10)
C100.0466 (16)0.0217 (12)0.0459 (15)0.0021 (11)0.0291 (13)0.0050 (11)
C110.0412 (15)0.0265 (13)0.0379 (14)−0.0066 (11)0.0225 (12)−0.0033 (10)
C120.0316 (13)0.0272 (12)0.0286 (12)−0.0013 (10)0.0195 (10)−0.0027 (9)
C140.0272 (13)0.0349 (13)0.0392 (14)0.0001 (10)0.0148 (11)0.0060 (11)
C150.0419 (16)0.0427 (16)0.0365 (14)−0.0094 (13)0.0078 (13)−0.0080 (12)
C160.060 (2)0.059 (2)0.093 (3)−0.0081 (18)0.041 (2)0.012 (2)
C170.0264 (12)0.0272 (12)0.0234 (11)0.0000 (10)0.0112 (10)0.0046 (9)
N10.0286 (11)0.0259 (10)0.0239 (9)0.0002 (8)0.0134 (8)−0.0030 (8)
N20.0269 (10)0.0217 (9)0.0255 (9)0.0008 (8)0.0162 (8)−0.0003 (7)
N30.0375 (12)0.0237 (10)0.0282 (10)0.0038 (9)0.0174 (9)0.0018 (8)
N40.0307 (11)0.0285 (10)0.0285 (10)−0.0030 (9)0.0105 (9)−0.0001 (8)
Ni10.0277 (2)0.0178 (2)0.0207 (2)0.0000.01265 (18)0.000
O10.0449 (13)0.0956 (18)0.0573 (14)0.0003 (12)0.0182 (11)0.0297 (13)
S10.0482 (4)0.0367 (4)0.0449 (4)0.0161 (3)0.0250 (3)0.0006 (3)

Geometric parameters (Å, °)

C1—N11.326 (3)C12—N41.359 (3)
C1—C21.395 (3)C14—N41.449 (3)
C1—H10.9300C14—H14A0.9600
C2—C31.364 (4)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.399 (4)C15—N41.458 (3)
C3—H30.9300C15—H15A0.9600
C4—C51.413 (3)C15—H15B0.9600
C4—C71.424 (4)C15—H15C0.9600
C5—N11.350 (3)C16—O11.402 (4)
C5—C61.436 (3)C16—H60.9600
C6—N21.368 (3)C16—H90.9600
C6—C91.400 (3)C16—H50.9600
C7—C81.346 (4)C17—N31.146 (3)
C7—H70.9300C17—S11.646 (2)
C8—C91.427 (3)N1—Ni12.0569 (19)
C8—H80.9300N2—Ni12.2556 (18)
C9—C101.406 (3)N3—Ni12.047 (2)
C10—C111.353 (4)Ni1—N3i2.047 (2)
C10—H100.9300Ni1—N1i2.0569 (19)
C11—C121.422 (3)Ni1—N2i2.2556 (18)
C11—H110.9300O1—H40.8217
C12—N21.346 (3)
N1—C1—C2122.5 (2)H14B—C14—H14C109.5
N1—C1—H1118.8N4—C15—H15A109.5
C2—C1—H1118.8N4—C15—H15B109.5
C3—C2—C1119.3 (2)H15A—C15—H15B109.5
C3—C2—H2120.3N4—C15—H15C109.5
C1—C2—H2120.3H15A—C15—H15C109.5
C2—C3—C4119.9 (2)H15B—C15—H15C109.5
C2—C3—H3120.1O1—C16—H6109.5
C4—C3—H3120.1O1—C16—H9109.5
C3—C4—C5117.1 (2)H6—C16—H9109.5
C3—C4—C7124.1 (2)O1—C16—H5109.5
C5—C4—C7118.8 (2)H6—C16—H5109.5
N1—C5—C4122.3 (2)H9—C16—H5109.5
N1—C5—C6117.26 (19)N3—C17—S1179.6 (2)
C4—C5—C6120.4 (2)C1—N1—C5118.7 (2)
N2—C6—C9124.0 (2)C1—N1—Ni1125.71 (16)
N2—C6—C5117.80 (19)C5—N1—Ni1115.34 (14)
C9—C6—C5118.2 (2)C12—N2—C6117.53 (19)
C8—C7—C4120.8 (2)C12—N2—Ni1131.28 (15)
C8—C7—H7119.6C6—N2—Ni1107.06 (14)
C4—C7—H7119.6C17—N3—Ni1171.3 (2)
C7—C8—C9121.3 (2)C12—N4—C14120.6 (2)
C7—C8—H8119.4C12—N4—C15119.6 (2)
C9—C8—H8119.4C14—N4—C15113.4 (2)
C6—C9—C10116.6 (2)N3i—Ni1—N390.27 (11)
C6—C9—C8120.1 (2)N3i—Ni1—N1i88.63 (7)
C10—C9—C8123.3 (2)N3—Ni1—N1i93.08 (7)
C11—C10—C9120.1 (2)N3i—Ni1—N193.08 (7)
C11—C10—H10119.9N3—Ni1—N188.63 (7)
C9—C10—H10119.9N1i—Ni1—N1177.57 (10)
C10—C11—C12120.2 (2)N3i—Ni1—N2167.90 (7)
C10—C11—H11119.9N3—Ni1—N296.75 (7)
C12—C11—H11119.9N1i—Ni1—N2100.76 (7)
N2—C12—N4118.5 (2)N1—Ni1—N277.31 (7)
N2—C12—C11121.0 (2)N3i—Ni1—N2i96.75 (7)
N4—C12—C11120.5 (2)N3—Ni1—N2i167.90 (7)
N4—C14—H14A109.5N1i—Ni1—N2i77.31 (7)
N4—C14—H14B109.5N1—Ni1—N2i100.76 (7)
H14A—C14—H14B109.5N2—Ni1—N2i78.13 (9)
N4—C14—H14C109.5C16—O1—H4106.5
H14A—C14—H14C109.5
N1—C1—C2—C3−1.8 (4)C6—C5—N1—Ni111.1 (2)
C1—C2—C3—C42.3 (4)N4—C12—N2—C6−173.0 (2)
C2—C3—C4—C51.1 (4)C11—C12—N2—C66.8 (3)
C2—C3—C4—C7−178.3 (2)N4—C12—N2—Ni133.1 (3)
C3—C4—C5—N1−5.3 (3)C11—C12—N2—Ni1−147.06 (18)
C7—C4—C5—N1174.2 (2)C9—C6—N2—C12−0.8 (3)
C3—C4—C5—C6175.4 (2)C5—C6—N2—C12179.39 (19)
C7—C4—C5—C6−5.2 (3)C9—C6—N2—Ni1158.98 (18)
N1—C5—C6—N28.4 (3)C5—C6—N2—Ni1−20.8 (2)
C4—C5—C6—N2−172.2 (2)N2—C12—N4—C1441.2 (3)
N1—C5—C6—C9−171.4 (2)C11—C12—N4—C14−138.6 (2)
C4—C5—C6—C98.0 (3)N2—C12—N4—C15−168.5 (2)
C3—C4—C7—C8179.1 (2)C11—C12—N4—C1511.7 (3)
C5—C4—C7—C8−0.3 (4)C1—N1—Ni1—N3i−17.9 (2)
C4—C7—C8—C92.8 (4)C5—N1—Ni1—N3i155.82 (16)
N2—C6—C9—C10−4.6 (3)C1—N1—Ni1—N372.3 (2)
C5—C6—C9—C10175.2 (2)C5—N1—Ni1—N3−113.98 (16)
N2—C6—C9—C8174.7 (2)C1—N1—Ni1—N2169.6 (2)
C5—C6—C9—C8−5.5 (3)C5—N1—Ni1—N2−16.74 (15)
C7—C8—C9—C60.1 (4)C1—N1—Ni1—N2i−115.3 (2)
C7—C8—C9—C10179.4 (2)C5—N1—Ni1—N2i58.34 (17)
C6—C9—C10—C113.9 (4)C12—N2—Ni1—N3i137.6 (3)
C8—C9—C10—C11−175.4 (2)C6—N2—Ni1—N3i−18.3 (4)
C9—C10—C11—C121.8 (4)C12—N2—Ni1—N3−97.3 (2)
C10—C11—C12—N2−7.5 (4)C6—N2—Ni1—N3106.84 (14)
C10—C11—C12—N4172.3 (2)C12—N2—Ni1—N1i−2.8 (2)
C2—C1—N1—C5−2.3 (4)C6—N2—Ni1—N1i−158.71 (14)
C2—C1—N1—Ni1171.22 (18)C12—N2—Ni1—N1175.7 (2)
C4—C5—N1—C15.9 (3)C6—N2—Ni1—N119.77 (14)
C6—C5—N1—C1−174.8 (2)C12—N2—Ni1—N2i71.63 (19)
C4—C5—N1—Ni1−168.28 (17)C6—N2—Ni1—N2i−84.28 (14)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14C···S1ii0.962.863.784 (3)163
O1—H4···S1iii0.822.653.331 (2)142
C15—H15B···O1iv0.962.513.427 (4)161

Symmetry codes: (ii) −x+3/2, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+3/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2613).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Eur. J. Inorg. Chem. pp. 3407–3412.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography