PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1047.
Published online 2008 May 10. doi:  10.1107/S160053680801163X
PMCID: PMC2961580

2-(2-Hydroxy­benzyl­ideneamino)benzonitrile

Abstract

The mol­ecule of the title compound, C14H10N2O, displays a trans configuration with respect to the C=N double bond. The mol­ecule is roughly planar; the two aromatic rings make a dihedral angle of 9.3 (3)°. Such a planar conformation is induced by the strong intra­molecular O—H(...)N hydrogen bond between the imine and hydroxyl groups.

Related literature

For the structures of similar Schiff base compounds, see: Cheng et al. (2005 [triangle], 2006 [triangle]). For related literature, see: Chen et al. (2008 [triangle]); Elmah et al. (1999 [triangle]); May et al. (2004 [triangle]); Weber et al. (2007 [triangle]); Xu et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1047-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O
  • M r = 222.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1047-efi1.jpg
  • a = 4.7667 (10) Å
  • b = 16.190 (3) Å
  • c = 7.6714 (15) Å
  • β = 93.30 (3)°
  • V = 591.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.20 × 0.05 × 0.05 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.981, T max = 1.00 (expected range = 0.977–0.996)
  • 5470 measured reflections
  • 1201 independent reflections
  • 633 reflections with I > 2σ(I)
  • R int = 0.105

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.136
  • S = 1.03
  • 1201 reflections
  • 155 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801163X/dn2331sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801163X/dn2331Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HJX acknowledges a Start-up Grant from Southeast University.

supplementary crystallographic information

Comment

The Schiff base compounds have received considerable attention for several decades, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Recently, we have reported a Schiff base compound (Xu, et al., 2008). As an extention of our work on the structural characterization of Schiff base compounds, the title compound, (I), has been synthesized and its crystal structure is reported here.

As expected, the molecule displays a trans configuration about the central C7=N1 bond. The dihedral angle between the planes of the two aromatic rings is 9.34(0.29)°, showing that the conjugated part of the molecule is not entirely coplanar. A strong O – H ··· N intramolecular hydrogen-bond interaction is observed in the molecular structure (Fig. 1, Table 1) similar to the pervious reports (Xu et al., 2008; Cheng et al.,2006, 2005).

All the bond lengths and bond angles in the compound are within normal ranges (Allen, et al., 1987). The C7=N1 bond length of 1.292 (5) Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999).

Experimental

All chemicals were obtained from commercial sources and used without further purification except for salicylaldehyde which is distiled under reduced pressure before use. 3-aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystal was obtained by recrystallization from ethyl alcohol(yield: 85%). 1H-NMR(CDCl3, 300 MHz): δ6.98 (t, 1 H), 7.08 (d, 1 H), 7.37(t, 2 H), 7.45 (t, 2 H), 7.69 (m, 2H), 8.72 (s, 1 H). Esi-MS: calcd for C14H9N2O – H m/z 221.24, found 221.34. For the X-ray diffraction analysis, suitable single crystals of compound (I) were obtained after one week by slow evaporation from an ethyl alcohol solution.

Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as smal spheres of arbitrary radii. Intramolecular H bond is shown as dashed line.

Crystal data

C14H10N2OF000 = 232
Mr = 222.24Dx = 1.249 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4123 reflections
a = 4.7667 (10) Åθ = 3.7–28.7º
b = 16.190 (3) ŵ = 0.08 mm1
c = 7.6714 (15) ÅT = 293 (2) K
β = 93.30 (3)ºBlock, colorless
V = 591.0 (2) Å30.20 × 0.05 × 0.05 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer1201 independent reflections
Radiation source: fine-focus sealed tube633 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.105
Detector resolution: 13.6612 pixels mm-1θmax = 26.0º
T = 293(2) Kθmin = 3.7º
ω scansh = −5→5
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −19→19
Tmin = 0.981, Tmax = 1.00l = −9→9
5470 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1201 reflectionsΔρmax = 0.15 e Å3
155 parametersΔρmin = −0.18 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0060 (10)0.5064 (3)0.8304 (7)0.0474 (15)
C2−0.0982 (11)0.5462 (4)0.6745 (9)0.0580 (16)
C3−0.2999 (13)0.6076 (4)0.6777 (10)0.076 (2)
H3−0.35940.63430.57470.091*
C4−0.4118 (14)0.6293 (4)0.8306 (12)0.0747 (19)
H4−0.54530.67120.83030.090*
C5−0.3320 (12)0.5906 (4)0.9860 (10)0.073 (2)
H5−0.41500.60471.08870.087*
C6−0.1256 (11)0.5303 (4)0.9858 (8)0.0639 (16)
H6−0.06520.50521.09040.077*
C70.2044 (10)0.4416 (3)0.8361 (7)0.0480 (14)
H70.25920.41790.94310.058*
C80.5180 (10)0.3518 (3)0.7054 (6)0.0431 (14)
C90.6040 (10)0.3216 (3)0.5473 (7)0.0526 (15)
C100.7977 (11)0.2575 (4)0.5400 (8)0.0657 (17)
H100.84840.23750.43260.079*
C110.9127 (13)0.2241 (4)0.6912 (9)0.0685 (18)
H111.04170.18120.68770.082*
C120.8365 (11)0.2546 (4)0.8477 (9)0.0623 (17)
H120.91820.23240.95030.075*
C130.6393 (11)0.3180 (3)0.8582 (7)0.0565 (15)
H130.58990.33730.96640.068*
C140.4758 (15)0.3547 (5)0.3888 (9)0.093 (2)
N10.3182 (9)0.4157 (2)0.6972 (5)0.0459 (11)
N20.3736 (15)0.3796 (5)0.2608 (8)0.147 (3)
O10.0028 (9)0.5256 (3)0.5203 (5)0.0815 (14)
H10.11740.48810.53480.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.040 (3)0.047 (4)0.055 (4)−0.003 (3)0.005 (3)−0.002 (3)
C20.052 (3)0.044 (4)0.079 (5)0.005 (3)0.013 (3)0.011 (3)
C30.067 (5)0.068 (5)0.094 (6)0.010 (4)0.014 (4)0.020 (4)
C40.063 (4)0.043 (4)0.119 (6)0.012 (4)0.013 (4)−0.001 (4)
C50.051 (4)0.079 (5)0.089 (5)0.002 (3)0.014 (4)−0.029 (4)
C60.054 (4)0.075 (5)0.062 (4)−0.004 (4)−0.002 (3)−0.020 (3)
C70.043 (3)0.053 (4)0.047 (4)0.002 (3)−0.003 (2)−0.005 (3)
C80.046 (3)0.042 (4)0.042 (3)−0.002 (3)0.004 (2)−0.006 (2)
C90.050 (3)0.060 (4)0.048 (4)0.004 (3)0.001 (3)0.003 (3)
C100.065 (4)0.068 (5)0.065 (4)0.009 (3)0.005 (3)−0.017 (3)
C110.060 (4)0.072 (5)0.073 (5)0.007 (4)0.004 (3)−0.005 (4)
C120.056 (4)0.052 (4)0.080 (5)0.010 (3)0.006 (3)0.017 (3)
C130.059 (4)0.061 (4)0.050 (4)0.006 (3)0.010 (3)0.007 (3)
C140.093 (5)0.135 (7)0.052 (4)0.042 (5)0.005 (4)−0.012 (4)
N10.049 (3)0.041 (3)0.048 (3)−0.003 (2)0.0079 (19)0.000 (2)
N20.162 (7)0.225 (9)0.053 (4)0.106 (6)−0.002 (4)0.010 (5)
O10.085 (3)0.092 (4)0.069 (3)0.028 (2)0.020 (2)0.030 (2)

Geometric parameters (Å, °)

C1—C61.405 (7)C8—C131.389 (7)
C1—C21.406 (7)C8—C91.391 (6)
C1—C71.450 (6)C8—N11.406 (6)
C2—O11.345 (7)C9—C101.393 (7)
C2—C31.385 (8)C9—C141.433 (9)
C3—C41.363 (9)C10—C111.365 (8)
C3—H30.9300C10—H100.9300
C4—C51.381 (9)C11—C121.366 (8)
C4—H40.9300C11—H110.9300
C5—C61.387 (8)C12—C131.397 (7)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.293 (5)C14—N21.144 (7)
C7—H70.9300O1—H10.8200
C6—C1—C2118.3 (5)C13—C8—C9117.9 (5)
C6—C1—C7119.1 (5)C13—C8—N1125.2 (5)
C2—C1—C7122.6 (5)C9—C8—N1116.9 (4)
O1—C2—C3118.5 (6)C8—C9—C10121.8 (5)
O1—C2—C1121.7 (5)C8—C9—C14118.4 (5)
C3—C2—C1119.8 (6)C10—C9—C14119.7 (5)
C4—C3—C2120.5 (6)C11—C10—C9119.7 (6)
C4—C3—H3119.8C11—C10—H10120.2
C2—C3—H3119.8C9—C10—H10120.2
C3—C4—C5121.6 (6)C10—C11—C12119.3 (6)
C3—C4—H4119.2C10—C11—H11120.3
C5—C4—H4119.2C12—C11—H11120.3
C4—C5—C6118.6 (6)C11—C12—C13122.0 (6)
C4—C5—H5120.7C11—C12—H12119.0
C6—C5—H5120.7C13—C12—H12119.0
C5—C6—C1121.2 (6)C8—C13—C12119.3 (5)
C5—C6—H6119.4C8—C13—H13120.3
C1—C6—H6119.4C12—C13—H13120.3
N1—C7—C1122.1 (4)N2—C14—C9178.6 (8)
N1—C7—H7118.9C7—N1—C8121.1 (4)
C1—C7—H7118.9C2—O1—H1109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.651 (6)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2331).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.
  • Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.
  • Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct.484, 229–234.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.
  • Xu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography