PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1137.
Published online 2008 May 21. doi:  10.1107/S1600536808014530
PMCID: PMC2961577

N-(3-Nitro­phen­yl)-N′-pivaloylthio­urea

Abstract

In the title compound, C12H15N3O3S, there is an intra­molecular N—H(...)O hydrogen bond. The crystal structure is stabilized by inter­molecular N—H(...)O, N—H(...)S and C—H(...)S hydrogen bonds, forming a two-dimensional network parallel to the ac plane.

Related literature

For related crystal structures, see: Saeed & Flörke (2007 [triangle]); Sultana et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1137-scheme1.jpg

Experimental

Crystal data

  • C12H15N3O3S
  • M r = 281.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1137-efi1.jpg
  • a = 20.400 (5) Å
  • b = 10.886 (3) Å
  • c = 6.2120 (15) Å
  • V = 1379.5 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 273 (2) K
  • 0.48 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.893, T max = 0.972
  • 8152 measured reflections
  • 3020 independent reflections
  • 2321 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.103
  • S = 0.91
  • 3020 reflections
  • 172 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.14 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1296 Friedel pairs
  • Flack parameter: 0.07 (9)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014530/sg2240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014530/sg2240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants OUP UKM OUP-BIT-28/20076 and UMT-FRGS-59001.

supplementary crystallographic information

Comment

Two isomers of N-nitrophenyl-N'-pivaloylthiourea were reported by Saeed & Flörke, (2007) (nitro group at ortho position) and Sultana et al., (2007) (nitro group at para position). Here, the molecule with a nitro group in the meta position, (I), has been successfully synthesized (Fig. 1). The molecule displays similar bond distances and angles to the related compounds.

The carbonylthiourea (S1/N1/N2/O1/C4–C7) and 3-nitrophenyl fragments are essentially planar, with maximum deviation of 0.077Å for atom O2 from the least square plane. The carbonylthiourea fragment makes a dihedral angle of 85.64 (7)° to the nitrophenyl fragment. There is an intramolecular hydrogen bond, N2—H2···O1 leading to a pseudo-six membered ring (O1···H2—N2—C6—N1—C5—O1). In the crystal structure, the molecules are linked by intermolecular interactions, N—H···O, N—H···S and C—H···S (symmetry codes as in Table 1) forming a two dimensional network along the ac plane (Fig.2).

Experimental

To a stirring acetone solution (75 ml) of pivaloyl chloride (5.0 g, 0.04 mol) and ammonium thiocyanate (3.15 g, 0.04 mol), 3-nitroaniline (5.73 g, 0.04 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from THF.

Refinement

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93–0.97Å and N—H = 0.86Å with Uiso(H)= 1.2 (CH2 and NH) or 1.5Ueq(C)(CH3).

Figures

Fig. 1.
: The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bond.
Fig. 2.
: Packing diagram of compound,(I), viewed down the b axis. The dashed lines denote the N—H···O, N—H···S and C—H···S hydrogen bonds.

Crystal data

C12H15N3O3SF000 = 592
Mr = 281.33Dx = 1.355 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 925 reflections
a = 20.400 (5) Åθ = 2.0–27.5º
b = 10.886 (3) ŵ = 0.24 mm1
c = 6.2120 (15) ÅT = 273 (2) K
V = 1379.5 (6) Å3Block, colourless
Z = 40.48 × 0.18 × 0.12 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3020 independent reflections
Radiation source: fine-focus sealed tube2321 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 83.66 pixels mm-1θmax = 27.5º
T = 298(2) Kθmin = 2.0º
ω scansh = −21→26
Absorption correction: multi-scan(SADABS; Bruker, 2000)k = −13→14
Tmin = 0.893, Tmax = 0.972l = −7→7
8152 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042  w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0515P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.28 e Å3
3020 reflectionsΔρmin = −0.14 e Å3
172 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1296 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.97040 (3)0.39600 (5)0.62603 (13)0.04412 (17)
O30.72971 (13)0.0240 (2)0.9230 (4)0.0936 (8)
O20.73374 (10)0.13216 (17)0.6346 (5)0.0791 (6)
O10.84682 (10)0.73243 (15)0.7556 (4)0.0694 (6)
N20.86872 (9)0.49974 (16)0.8218 (3)0.0422 (5)
H2A0.84560.56400.84800.051*
N10.92866 (9)0.62483 (14)0.5965 (3)0.0394 (5)
H1A0.96030.63040.50550.047*
C110.79218 (11)0.2008 (2)0.9299 (4)0.0414 (5)
C100.81336 (11)0.1747 (2)1.1350 (5)0.0490 (6)
H10A0.79990.10351.20520.059*
C90.85486 (13)0.2563 (2)1.2331 (5)0.0521 (6)
H9A0.87040.23951.37080.062*
C80.87392 (11)0.36328 (19)1.1304 (5)0.0463 (5)
H8A0.90180.41871.19850.056*
C70.85101 (11)0.38661 (19)0.9253 (4)0.0387 (5)
C120.80979 (11)0.3062 (2)0.8226 (4)0.0413 (5)
H12A0.79420.32240.68480.050*
N30.74809 (11)0.11334 (19)0.8218 (5)0.0557 (6)
C60.91904 (11)0.50999 (19)0.6876 (4)0.0375 (5)
C50.89385 (11)0.73105 (18)0.6338 (5)0.0421 (5)
C40.91691 (13)0.8460 (2)0.5166 (4)0.0451 (6)
C30.90038 (15)0.8322 (3)0.2772 (5)0.0635 (8)
H3A0.92390.76340.21890.095*
H3B0.91280.90560.20190.095*
H3C0.85410.81880.26100.095*
C20.87985 (15)0.9559 (2)0.6113 (7)0.0733 (8)
H2B0.89050.96410.76110.110*
H2C0.83350.94300.59580.110*
H2D0.89231.02940.53630.110*
C10.99039 (14)0.8627 (2)0.5451 (6)0.0625 (8)
H1B1.01300.79380.48340.094*
H1C1.00050.86810.69570.094*
H1D1.00410.93680.47420.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0528 (3)0.0349 (3)0.0446 (3)0.0050 (2)0.0020 (3)0.0025 (3)
O30.124 (2)0.0680 (13)0.0885 (16)−0.0522 (13)0.0132 (15)−0.0002 (13)
O20.0909 (15)0.0660 (12)0.0804 (15)−0.0173 (10)−0.0336 (15)0.0052 (14)
O10.0707 (13)0.0443 (10)0.0930 (16)0.0126 (9)0.0308 (12)0.0156 (10)
N20.0457 (10)0.0311 (9)0.0497 (11)0.0041 (8)0.0075 (10)0.0086 (8)
N10.0440 (10)0.0325 (9)0.0416 (13)−0.0003 (7)0.0044 (10)0.0064 (8)
C110.0378 (12)0.0376 (12)0.0488 (14)−0.0003 (10)0.0062 (11)0.0013 (11)
C100.0557 (14)0.0387 (11)0.0526 (14)−0.0019 (10)0.0128 (15)0.0136 (15)
C90.0650 (16)0.0508 (14)0.0404 (13)0.0030 (13)−0.0015 (12)0.0109 (12)
C80.0488 (12)0.0427 (11)0.0474 (13)−0.0016 (9)−0.0003 (15)−0.0004 (14)
C70.0396 (13)0.0366 (12)0.0399 (13)0.0020 (9)0.0051 (10)0.0043 (10)
C120.0423 (13)0.0409 (12)0.0409 (13)0.0024 (10)0.0016 (11)0.0056 (11)
N30.0540 (13)0.0435 (12)0.0695 (16)−0.0055 (10)0.0068 (12)−0.0009 (11)
C60.0391 (11)0.0367 (12)0.0366 (14)−0.0034 (10)−0.0084 (9)0.0029 (9)
C50.0441 (12)0.0350 (10)0.0471 (12)0.0004 (9)0.0006 (13)0.0067 (13)
C40.0520 (15)0.0313 (11)0.0519 (15)−0.0003 (11)0.0008 (12)0.0078 (10)
C30.0761 (19)0.0570 (16)0.0575 (19)−0.0034 (14)−0.0070 (15)0.0183 (14)
C20.093 (2)0.0359 (12)0.091 (2)0.0162 (13)0.020 (2)0.0097 (18)
C10.0643 (18)0.0414 (14)0.082 (2)−0.0118 (13)−0.0026 (15)0.0018 (13)

Geometric parameters (Å, °)

S1—C61.668 (2)C8—C71.381 (4)
O3—N31.217 (3)C8—H8A0.9300
O2—N31.216 (3)C7—C121.371 (3)
O1—C51.222 (3)C12—H12A0.9300
N2—C61.327 (3)C5—C41.523 (3)
N2—C71.435 (3)C4—C11.520 (4)
N2—H2A0.8600C4—C31.532 (4)
N1—C51.377 (3)C4—C21.532 (4)
N1—C61.386 (3)C3—H3A0.9600
N1—H1A0.8600C3—H3B0.9600
C11—C101.375 (4)C3—H3C0.9600
C11—C121.375 (3)C2—H2B0.9600
C11—N31.472 (3)C2—H2C0.9600
C10—C91.370 (4)C2—H2D0.9600
C10—H10A0.9300C1—H1B0.9600
C9—C81.384 (3)C1—H1C0.9600
C9—H9A0.9300C1—H1D0.9600
C6—N2—C7123.23 (18)N1—C6—S1119.22 (17)
C6—N2—H2A118.4O1—C5—N1121.3 (2)
C7—N2—H2A118.4O1—C5—C4121.9 (2)
C5—N1—C6128.0 (2)N1—C5—C4116.8 (2)
C5—N1—H1A116.0C1—C4—C5110.3 (2)
C6—N1—H1A116.0C1—C4—C3110.0 (2)
C10—C11—C12122.7 (2)C5—C4—C3108.4 (2)
C10—C11—N3118.8 (2)C1—C4—C2110.4 (2)
C12—C11—N3118.6 (2)C5—C4—C2107.8 (2)
C9—C10—C11118.2 (2)C3—C4—C2109.9 (3)
C9—C10—H10A120.9C4—C3—H3A109.5
C11—C10—H10A120.9C4—C3—H3B109.5
C10—C9—C8120.9 (3)H3A—C3—H3B109.5
C10—C9—H9A119.5C4—C3—H3C109.5
C8—C9—H9A119.5H3A—C3—H3C109.5
C7—C8—C9119.0 (2)H3B—C3—H3C109.5
C7—C8—H8A120.5C4—C2—H2B109.5
C9—C8—H8A120.5C4—C2—H2C109.5
C12—C7—C8121.3 (2)H2B—C2—H2C109.5
C12—C7—N2119.6 (2)C4—C2—H2D109.5
C8—C7—N2119.1 (2)H2B—C2—H2D109.5
C7—C12—C11117.9 (2)H2C—C2—H2D109.5
C7—C12—H12A121.1C4—C1—H1B109.5
C11—C12—H12A121.1C4—C1—H1C109.5
O2—N3—O3123.7 (3)H1B—C1—H1C109.5
O2—N3—C11118.3 (2)C4—C1—H1D109.5
O3—N3—C11118.0 (3)H1B—C1—H1D109.5
N2—C6—N1116.21 (19)H1C—C1—H1D109.5
N2—C6—S1124.57 (17)
C12—C11—C10—C9−1.5 (4)C10—C11—N3—O33.4 (3)
N3—C11—C10—C9179.4 (2)C12—C11—N3—O3−175.7 (2)
C11—C10—C9—C81.2 (4)C7—N2—C6—N1178.4 (2)
C10—C9—C8—C7−0.6 (4)C7—N2—C6—S1−2.2 (3)
C9—C8—C7—C120.2 (4)C5—N1—C6—N22.6 (4)
C9—C8—C7—N2177.6 (2)C5—N1—C6—S1−176.9 (2)
C6—N2—C7—C12−87.3 (3)C6—N1—C5—O1−2.1 (4)
C6—N2—C7—C895.2 (3)C6—N1—C5—C4177.8 (2)
C8—C7—C12—C11−0.4 (3)O1—C5—C4—C1130.5 (3)
N2—C7—C12—C11−177.81 (19)N1—C5—C4—C1−49.4 (3)
C10—C11—C12—C71.0 (3)O1—C5—C4—C3−109.0 (3)
N3—C11—C12—C7−179.9 (2)N1—C5—C4—C371.1 (3)
C10—C11—N3—O2−174.3 (2)O1—C5—C4—C29.9 (4)
C12—C11—N3—O26.6 (3)N1—C5—C4—C2−170.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.605 (3)135
N1—H1A···S1i0.862.763.582 (2)160
C3—H3A···S1i0.962.833.742 (3)159
N2—H2A···O2ii0.862.523.197 (3)137

Symmetry codes: (i) −x+2, −y+1, z−1/2; (ii) −x+3/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2240).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography