PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m827.
Published online 2008 May 21. doi:  10.1107/S1600536808014499
PMCID: PMC2961572

Tetra­kis(1,1,1-trifluoro­acetyl­acetonato-κ2 O,O′)zirconium(IV) toluene solvate

Abstract

In the title compound, [Zr(C5H4F3O2)4]·C7H8, the Zr atom is in a square-anti­prismatic coordination geometry that comprises four O,O′-bidentate trifluoro­acetyl­acetonate ligands. The O—Zr—O bite angles of the acetonate ligands range from 75.27 (5) to 75.41 (5)°. The Zr atom is located on a twofold rotation axis.

Related literature

For β-diketone complexes of zirconium, see: Allard (1976 [triangle]); Clegg (1987 [triangle]); Calderazzo et al. (1998 [triangle]); Davis & Einstein (1978 [triangle]); Elder (1969 [triangle]); Silverton & Hoard (1963 [triangle]). For the unsolvated title complex, see: Kurat’eva et al. (2007 [triangle]). For a comparison with the isomorphous hafnium complex, see: Viljoen et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m827-scheme1.jpg

Experimental

Crystal data

  • [Zr(C5H4F3O2)4]·C7H8
  • M r = 887.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m827-efi1.jpg
  • a = 22.537 (5) Å
  • b = 8.054 (5) Å
  • c = 22.786 (5) Å
  • β = 118.383 (5)°
  • V = 3639 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 100 (2) K
  • 0.33 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.876, T max = 0.922
  • 14897 measured reflections
  • 3975 independent reflections
  • 3559 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.070
  • S = 1.05
  • 3975 reflections
  • 259 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014499/ng2456sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014499/ng2456Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Advanced Metals Initiative (AMI), the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged. Dr R. Meijboom is acknowledged for his kind assistance in the use of modified Shlenck techniques.

supplementary crystallographic information

Comment

Zirconium complexes containing diketonato ligands have been reported in the past (Silverton & Hoard, 1963; Allard, 1976; Clegg, 1987; Elder et al., 1969; Calderazzo et al., 1998; Davis & Einstein, 1978). The following diketonato ligand complexes have been reported; acetylacetone (acacH), hexafluoroacetylacetone (hfaaH), tropolone (tropH) and trifluoroacetylacetone (tfaaH). Our research group's interest is in the solvated form of trifluoroacetylacetonato-zirconium(IV) complexes. The title compound is presented as an example of a toluene solvated species.

The title compound is composed of an eight-coordinate zirconium metal centre in which the four O,O-donating bidentate tfaa-ligands are arranged around the metal centre to give a distorted square antiprismatic geometry. The molecule has an inversion centre on the metal with two bidentate ligands on either side including a non-disordered toluene solvate molecule found in a 1:1 ratio to the zirconium complex. The bidentate ligands are coordinated in an alternating configuration with respect to the CF3 groups. This ligand interchange can be visualized as four fins or propellar blades around the metal centre. The distorted square antiprism is defined by the intersection of the two planes formed by the ligand-backbone (O—C—C—C—O) and the O—Zr—O bite angle, which bend inward at an angle of 19.84 - 20.23°. Within the bidentate ligand structural representation, the Zr—O1 (CF3-side bond) and Zr—O2 (CH3-side bond) bond distances are unequal, varying by 0.034 - 0.040 Å. The bite angles of the bidentate ligands to the metal centre are 75.27 (5) and 75.41 (5)°, respectively.

π-π Stacking is observed between the two toluene solvate molecules C100—C106 and C100—C106 (-1/2 + x, 0.5 - y, -1/2 + z) with an interplanar distance of 3.548 Å and a centroid-to-centroid distance of 4.933 Å. Weak C—H-π intermolecular interactions are observed between the toluene solvate and the tfaa-moiety: C105—H105 to C12 (3.786 Å, 172.96 °) and C106—H10D to C14 (3.702 Å, 67.74 °), respectively.

Compared to a recently published structure (Kurat'eva et al., 2007) of the unsolvated complex the deviation in characteristics between the solvated and unsolvated species are minimal. The Zr—O bond length on the CF3-side of the acetylacetonato group, is shorter than the CH3-side bond by an average of 0.035 Å. The angles at which the ligands bend out of the O—Zr—O plane show the most notable difference, with the steric interaction of the toluene molecule distorting the two fins formed on the zirconium complex. This observation is further clarified by an overlay of the solvated and unsolvated zirconium complexes, which has an RMS overlay error of less than 1 Å (excluding H and CF3) indicating the distortion impact of the toluene solvate.

Experimental

Chemicals were purchased from Sigma-Aldrich and used as received except for toluene which was dried by passage over alumina. Synthesis of [Zr(Tfaa)4] was done under Schlenk conditions. ZrCl4 (218.8 mg, 0.9389 mmol) was added to TfaaNa (663.4 mg, 3.768 mmol, 4eq) in dry toluene (50 ml). This slurry was refluxed for 16 h at 80°C before filtration of the remaining precipitates. The filtrate was recrystalized at -23°C to yield crystals suitable for data collection. Spectroscopic data: 19F NMR (C6D6, 564.77 MHz, p.p.m.): -75.3; IR (ATR) ν(CO): 1533 cm-1.

Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons were refined from electron density.

Figures

Fig. 1.
: Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). For the carbon atoms, first digit refers to acetonato backbone moiety, second digit to atom on this backbone. Hydrogen and fluorine ...

Crystal data

[Zr(C5H4F3O2)4]·C7H8F000 = 1792
Mr = 887.82Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7203 reflections
a = 22.537 (5) Åθ = 2.7–28.3º
b = 8.054 (5) ŵ = 0.41 mm1
c = 22.786 (5) ÅT = 100 (2) K
β = 118.383 (5)ºCuboid, colourless
V = 3639 (3) Å30.33 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3975 independent reflections
Radiation source: fine-focus sealed tube3559 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 100(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −28→25
Tmin = 0.876, Tmax = 0.922k = −10→7
14897 measured reflectionsl = −28→29

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070  w = 1/[σ2(Fo2) + (0.0265P)2 + 6.0538P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3975 reflectionsΔρmax = 0.50 e Å3
259 parametersΔρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zr0.50000.16714 (3)0.75000.01245 (7)
F130.26810 (6)−0.05226 (14)0.66176 (6)0.0295 (3)
F110.31909 (6)−0.06998 (14)0.76862 (6)0.0287 (3)
F030.51411 (7)0.40573 (15)0.95310 (6)0.0340 (3)
F020.45468 (7)0.22014 (15)0.96764 (6)0.0368 (3)
O110.39952 (6)0.08075 (15)0.72452 (6)0.0158 (3)
O020.51936 (6)−0.05446 (15)0.81277 (6)0.0166 (3)
O010.49399 (6)0.25443 (15)0.83681 (6)0.0169 (3)
F120.24250 (6)0.11472 (15)0.71971 (7)0.0366 (3)
O120.43558 (6)0.38983 (15)0.71261 (6)0.0171 (3)
F010.40934 (7)0.38633 (18)0.88399 (6)0.0431 (4)
C130.33615 (9)0.3227 (2)0.71690 (10)0.0200 (4)
C020.48042 (9)0.1790 (2)0.87851 (9)0.0174 (4)
C050.50748 (11)−0.2801 (2)0.87225 (10)0.0244 (4)
H05A0.5085−0.34400.83720.037*
H05B0.4693−0.31290.87740.037*
H05C0.5481−0.29940.91320.037*
C120.34797 (9)0.1566 (2)0.72089 (8)0.0160 (3)
C010.46413 (10)0.2976 (2)0.92118 (9)0.0230 (4)
C110.29404 (9)0.0373 (2)0.71787 (10)0.0214 (4)
C140.38103 (9)0.4351 (2)0.70992 (9)0.0182 (4)
C030.47956 (10)0.0124 (2)0.88819 (9)0.0200 (4)
C040.50208 (9)−0.1001 (2)0.85506 (9)0.0174 (4)
C1020.67683 (12)0.0133 (3)1.07100 (11)0.0402 (6)
H1020.6803−0.01341.11220.048*
C150.36143 (10)0.6138 (2)0.69579 (11)0.0257 (4)
H15A0.40030.67860.70360.039*
H15B0.34400.65170.72460.039*
H15C0.32740.62600.65010.039*
C1050.66546 (11)0.0938 (4)0.94967 (11)0.0403 (6)
H1050.66120.11950.90800.048*
C1040.67351 (12)−0.0692 (3)0.96984 (12)0.0428 (6)
H1040.6748−0.15190.94200.051*
C1000.66358 (10)0.2198 (3)0.98939 (11)0.0337 (5)
C1010.66888 (11)0.1768 (3)1.05052 (11)0.0352 (5)
H1010.66710.25931.07820.042*
C1030.67966 (12)−0.1103 (3)1.03094 (13)0.0411 (6)
H1030.6857−0.22031.04500.049*
C1060.65652 (13)0.3975 (4)0.96634 (16)0.0586 (8)
H10A0.65610.46910.99980.088*0.50
H10B0.61510.41030.92550.088*0.50
H10C0.69380.42620.95900.088*0.50
H10D0.65400.40130.92310.088*0.50
H10E0.69490.46010.99740.088*0.50
H10F0.61620.44420.96390.088*0.50
H030.4677 (11)−0.027 (3)0.9208 (10)0.024 (6)*
H130.2975 (12)0.361 (3)0.7144 (11)0.028 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zr0.01529 (12)0.00880 (12)0.01714 (12)0.0000.01087 (9)0.000
F130.0252 (6)0.0253 (6)0.0364 (6)−0.0084 (5)0.0133 (5)−0.0067 (5)
F110.0325 (6)0.0214 (6)0.0384 (7)−0.0030 (5)0.0221 (6)0.0069 (5)
F030.0518 (8)0.0227 (6)0.0398 (7)−0.0104 (6)0.0318 (6)−0.0121 (5)
F020.0681 (9)0.0251 (6)0.0407 (7)−0.0054 (6)0.0450 (7)−0.0025 (5)
O110.0164 (6)0.0125 (6)0.0217 (6)0.0012 (5)0.0116 (5)0.0004 (5)
O020.0188 (6)0.0140 (6)0.0206 (6)0.0007 (5)0.0123 (5)0.0025 (5)
O010.0222 (6)0.0131 (6)0.0199 (6)−0.0008 (5)0.0136 (5)0.0003 (5)
F120.0295 (7)0.0204 (6)0.0776 (10)0.0012 (5)0.0399 (7)0.0000 (6)
O120.0193 (6)0.0134 (6)0.0231 (6)0.0016 (5)0.0136 (5)0.0024 (5)
F010.0451 (8)0.0518 (9)0.0367 (7)0.0246 (7)0.0229 (6)−0.0001 (6)
C130.0184 (9)0.0161 (9)0.0311 (10)0.0030 (7)0.0163 (8)0.0012 (8)
C020.0192 (9)0.0182 (9)0.0173 (8)−0.0009 (7)0.0106 (7)−0.0008 (7)
C050.0343 (11)0.0156 (9)0.0300 (10)−0.0006 (8)0.0208 (9)0.0034 (8)
C120.0164 (8)0.0158 (9)0.0192 (8)0.0001 (7)0.0113 (7)−0.0005 (7)
C010.0319 (11)0.0205 (10)0.0228 (9)0.0012 (8)0.0180 (8)0.0014 (7)
C110.0203 (9)0.0160 (9)0.0342 (10)0.0017 (7)0.0180 (8)0.0001 (8)
C140.0217 (9)0.0146 (9)0.0202 (9)0.0034 (7)0.0115 (7)0.0012 (7)
C030.0260 (10)0.0186 (9)0.0212 (9)−0.0010 (7)0.0159 (8)0.0023 (7)
C040.0163 (9)0.0164 (9)0.0194 (8)−0.0018 (7)0.0084 (7)0.0020 (7)
C1020.0378 (13)0.0551 (16)0.0294 (11)−0.0099 (11)0.0174 (10)0.0037 (11)
C150.0268 (10)0.0148 (9)0.0406 (11)0.0043 (8)0.0202 (9)0.0043 (8)
C1050.0264 (11)0.0699 (18)0.0234 (10)−0.0085 (11)0.0108 (9)−0.0024 (11)
C1040.0286 (12)0.0546 (17)0.0453 (14)−0.0078 (11)0.0177 (11)−0.0252 (12)
C1000.0176 (10)0.0387 (13)0.0346 (11)−0.0053 (9)0.0040 (9)0.0047 (10)
C1010.0305 (12)0.0414 (14)0.0330 (11)−0.0061 (10)0.0145 (9)−0.0128 (10)
C1030.0284 (12)0.0329 (13)0.0552 (15)−0.0059 (10)0.0144 (11)−0.0016 (11)
C1060.0288 (13)0.0518 (17)0.0718 (19)−0.0054 (12)0.0048 (13)0.0233 (15)

Geometric parameters (Å, °)

Zr—O01i2.1633 (13)C05—H05C0.9600
Zr—O012.1633 (13)C12—C111.525 (3)
Zr—O112.1679 (13)C14—C151.496 (3)
Zr—O11i2.1679 (13)C03—C041.419 (3)
Zr—O02i2.1973 (15)C03—H030.95 (2)
Zr—O022.1973 (15)C102—C1031.372 (4)
Zr—O12i2.2079 (15)C102—C1011.381 (4)
Zr—O122.2079 (15)C102—H1020.9300
F13—C111.336 (2)C15—H15A0.9600
F11—C111.335 (2)C15—H15B0.9600
F03—C011.333 (2)C15—H15C0.9600
F02—C011.330 (2)C105—C1041.374 (4)
O11—C121.280 (2)C105—C1001.374 (4)
O02—C041.254 (2)C105—H1050.9300
O01—C021.281 (2)C104—C1031.373 (4)
F12—C111.337 (2)C104—H1040.9300
O12—C141.256 (2)C100—C1011.384 (3)
F01—C011.326 (2)C100—C1061.506 (4)
C13—C121.359 (3)C101—H1010.9300
C13—C141.421 (3)C103—H1030.9300
C13—H130.90 (2)C106—H10A0.9600
C02—C031.362 (3)C106—H10B0.9600
C02—C011.527 (3)C106—H10C0.9600
C05—C041.492 (3)C106—H10D0.9600
C05—H05A0.9600C106—H10E0.9600
C05—H05B0.9600C106—H10F0.9600
O01i—Zr—O01142.07 (7)F13—C11—C12111.10 (15)
O01i—Zr—O11111.77 (5)F12—C11—C12112.97 (15)
O01—Zr—O1180.66 (5)O12—C14—C13122.83 (16)
O01i—Zr—O11i80.66 (5)O12—C14—C15118.18 (16)
O01—Zr—O11i111.77 (5)C13—C14—C15118.94 (17)
O11—Zr—O11i142.56 (7)C02—C03—C04120.48 (17)
O01i—Zr—O02i75.41 (5)C02—C03—H03118.7 (13)
O01—Zr—O02i141.24 (5)C04—C03—H03120.5 (13)
O11—Zr—O02i72.91 (5)O02—C04—C03122.81 (17)
O11i—Zr—O02i76.85 (5)O02—C04—C05118.06 (16)
O01i—Zr—O02141.24 (5)C03—C04—C05119.11 (16)
O01—Zr—O0275.41 (5)C103—C102—C101120.5 (2)
O11—Zr—O0276.85 (5)C103—C102—H102119.8
O11i—Zr—O0272.91 (5)C101—C102—H102119.8
O02i—Zr—O0271.36 (7)C14—C15—H15A109.5
O01i—Zr—O12i76.90 (5)C14—C15—H15B109.5
O01—Zr—O12i72.46 (5)H15A—C15—H15B109.5
O11—Zr—O12i140.87 (5)C14—C15—H15C109.5
O11i—Zr—O12i75.27 (5)H15A—C15—H15C109.5
O02i—Zr—O12i143.29 (5)H15B—C15—H15C109.5
O02—Zr—O12i121.20 (5)C104—C105—C100121.7 (2)
O01i—Zr—O1272.46 (5)C104—C105—H105119.1
O01—Zr—O1276.90 (5)C100—C105—H105119.1
O11—Zr—O1275.27 (5)C103—C104—C105120.2 (2)
O11i—Zr—O12140.87 (5)C103—C104—H104119.9
O02i—Zr—O12121.20 (5)C105—C104—H104119.9
O02—Zr—O12143.29 (5)C105—C100—C101117.6 (2)
O12i—Zr—O1271.35 (7)C105—C100—C106120.2 (2)
C12—O11—Zr131.65 (12)C101—C100—C106122.2 (2)
C04—O02—Zr134.45 (12)C102—C101—C100120.9 (2)
C02—O01—Zr131.67 (12)C102—C101—H101119.5
C14—O12—Zr134.72 (12)C100—C101—H101119.5
C12—C13—C14120.47 (17)C102—C103—C104119.1 (2)
C12—C13—H13119.8 (15)C102—C103—H103120.5
C14—C13—H13119.4 (15)C104—C103—H103120.5
O01—C02—C03127.88 (17)C100—C106—H10A109.5
O01—C02—C01112.97 (16)C100—C106—H10B109.5
C03—C02—C01119.15 (16)H10A—C106—H10B109.5
C04—C05—H05A109.5C100—C106—H10C109.5
C04—C05—H05B109.5H10A—C106—H10C109.5
H05A—C05—H05B109.5H10B—C106—H10C109.5
C04—C05—H05C109.5C100—C106—H10D109.5
H05A—C05—H05C109.5H10A—C106—H10D141.1
H05B—C05—H05C109.5H10B—C106—H10D56.3
O11—C12—C13128.12 (17)H10C—C106—H10D56.3
O11—C12—C11112.42 (15)C100—C106—H10E109.5
C13—C12—C11119.40 (16)H10A—C106—H10E56.3
F01—C01—F02107.98 (17)H10B—C106—H10E141.1
F01—C01—F03106.60 (17)H10C—C106—H10E56.3
F02—C01—F03106.60 (15)H10D—C106—H10E109.5
F01—C01—C02111.26 (16)C100—C106—H10F109.5
F02—C01—C02113.01 (16)H10A—C106—H10F56.3
F03—C01—C02111.06 (16)H10B—C106—H10F56.3
F11—C11—F13106.99 (15)H10C—C106—H10F141.1
F11—C11—F12106.91 (15)H10D—C106—H10F109.5
F13—C11—F12106.87 (15)H10E—C106—H10F109.5
F11—C11—C12111.66 (15)
O01i—Zr—O11—C12−89.06 (15)C14—C13—C12—O116.1 (3)
O01—Zr—O11—C1253.60 (14)C14—C13—C12—C11−170.90 (17)
O11i—Zr—O11—C12167.40 (15)O01—C02—C01—F0162.8 (2)
O02i—Zr—O11—C12−155.08 (15)C03—C02—C01—F01−117.6 (2)
O02—Zr—O11—C12130.68 (15)O01—C02—C01—F02−175.56 (16)
O12i—Zr—O11—C126.91 (18)C03—C02—C01—F024.1 (3)
O12—Zr—O11—C12−25.20 (14)O01—C02—C01—F03−55.8 (2)
O01i—Zr—O02—C04−163.83 (14)C03—C02—C01—F03123.82 (19)
O01—Zr—O02—C0428.28 (16)O11—C12—C11—F1154.2 (2)
O11—Zr—O02—C04−55.32 (16)C13—C12—C11—F11−128.38 (18)
O11i—Zr—O02—C04147.03 (17)O11—C12—C11—F13−65.2 (2)
O02i—Zr—O02—C04−131.45 (18)C13—C12—C11—F13112.26 (19)
O12i—Zr—O02—C0486.84 (17)O11—C12—C11—F12174.73 (15)
O12—Zr—O02—C04−13.9 (2)C13—C12—C11—F12−7.8 (3)
O01i—Zr—O01—C02167.64 (16)Zr—O12—C14—C13−17.5 (3)
O11—Zr—O01—C0254.03 (15)Zr—O12—C14—C15165.24 (13)
O11i—Zr—O01—C02−89.17 (15)C12—C13—C14—O12−6.0 (3)
O02i—Zr—O01—C026.93 (19)C12—C13—C14—C15171.22 (18)
O02—Zr—O01—C02−24.70 (15)O01—C02—C03—C047.0 (3)
O12i—Zr—O01—C02−154.76 (16)C01—C02—C03—C04−172.56 (17)
O12—Zr—O01—C02130.96 (16)Zr—O02—C04—C03−20.3 (3)
O01i—Zr—O12—C14145.52 (17)Zr—O02—C04—C05161.44 (13)
O01—Zr—O12—C14−57.13 (16)C02—C03—C04—O02−4.8 (3)
O11—Zr—O12—C1426.49 (16)C02—C03—C04—C05173.47 (18)
O11i—Zr—O12—C14−165.63 (15)C100—C105—C104—C1030.3 (4)
O02i—Zr—O12—C1485.53 (17)C104—C105—C100—C101−1.1 (3)
O02—Zr—O12—C14−15.3 (2)C104—C105—C100—C106178.4 (2)
O12i—Zr—O12—C14−132.77 (19)C103—C102—C101—C1000.0 (4)
Zr—O01—C02—C0315.3 (3)C105—C100—C101—C1021.0 (3)
Zr—O01—C02—C01−165.07 (12)C106—C100—C101—C102−178.5 (2)
Zr—O11—C12—C1317.1 (3)C101—C102—C103—C104−0.9 (4)
Zr—O11—C12—C11−165.74 (11)C105—C104—C103—C1020.8 (4)

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2456).

References

  • Allard, B. (1976). J. Inorg. Nucl. Chem.38, 2109–2115.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderazzo, F., Englert, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg Chim. Acta, 270, 177–188.
  • Clegg, W. (1987). Acta Cryst. C43, 789–791.
  • Davis, A. R. & Einstein, F. W. B. (1978). Acta Cryst. B34, 2110–2115.
  • Elder, M. (1969). Inorg. Chem.8, 2103–2109.
  • Kurat’eva, N. V., Baidina, I. A., Stabnikov, O. A. & Igumenov, I. K. (2007). J. Struct. Chem.48, 513–522.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silverton, J. V. & Hoard, J. L. (1963). Inorg. Chem.2, 243–249.
  • Viljoen, J. A., Roodt, A. & Muller, A. J. (2008). Acta Cryst. E64, m838–m839. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography