PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o999.
Published online 2008 May 7. doi:  10.1107/S1600536808010258
PMCID: PMC2961568

(4S,8S,9R,12E)-8,9,16,18-Tetrahydroxy-4-methyl-3-oxabicyclo[12.4.0]octadeca-12,14,16,18-tetraen-2-one monohydrate

Abstract

The asymmetric unit of the title compound, C18H24O6·H2O, contains a 14-membered macrolide mol­ecule and a water mol­ecule. In the crystal structure, intra­molecular C—H(...)O and O—H(...)O hydrogen bonds help to stabilize the mol­ecular conformation, while inter­molecular O—H(...)O hydrogen bonds link the mol­ecules, forming an infinite network. The absolute configuration was assigned by comparison with related zearalenone compounds, but needs verification.

Related literature

For the extraction of the components of Fusarium sp. 05ABR26 see: Zhao et al. (2008 [triangle]). For the crystal structure of zearalenol, see: Gelo-Pujić et al. (1994 [triangle]). For related zearalenone series compounds, see: Zinedine et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o999-scheme1.jpg

Experimental

Crystal data

  • C18H24O6·H2O
  • M r = 354.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o999-efi1.jpg
  • a = 18.23 (1) Å
  • b = 8.078 (6) Å
  • c = 13.86 (1) Å
  • β = 118.441 (7)°
  • V = 1795 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.20 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.980, T max = 0.995
  • 4458 measured reflections
  • 2076 independent reflections
  • 1804 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.145
  • S = 1.03
  • 2076 reflections
  • 239 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010258/im2058sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010258/im2058Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant No. 30371680). We thank Professor Min-Qin Chen of the Research Centre of Analysis and Measurement of Fudan University for work on the X-ray crystal structure determination.

supplementary crystallographic information

Comment

The title compound, (I), 5'-hydroxyzearalenol is a new natural β-resorcylic macrolide which has recently been isolated (Zhao et al., 2008) from the culture of a marine-derived fungus Fusarium sp. 05ABR26. It is closely related in structure to the zearalenone series compounds (Zinedine et al., 2007), which show attractive cytotoxic and genotoxic effects. As a continuation of our studies on the secondary metabolites of Fusarium sp. 05ABR26, we report here the crystal structure of 5'-hydroxyzearalenol monohydrate.

In the asymmetric unit of (I) one molecule of 5'-hydroxyzearalenol and one solvent water molecule are observed. The β-resorcylic unit (C1—C7) is essentially planar, with a r.m.s. deviation of the respective atoms of 0.010 (4) Å. The 14-membered macrolide (C1/C6—C8/C10—C18/O4) adopts a twist conformation which is additionally stabilized by weak intramolecular C—H···O and O—H···O hydrogen bond (Table 1). Otherwise, all bond lengths and angles are within normal ranges (Allen et al., 1987).

The structure of (I) is built up from the self-assembly of the molecules of 5'-hydroxyzearalenol with water molecules via hydrogen-bond interactions. The water molecule is involved as a donor and accepter of hydrogen bonds. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Fig. 2 and Table 1).

It was not possible to accurately determine the absolute configuration of (I) by anomalous dispersion effects in the case of using Mo K/a radiation (0.71073 Å). However, the naturally occurring compounds of the zearalenone series all had the same C3S configuration (Zinedine et al., 2007), thereofore leading to the assignment of the absolute configurations of C7 and C8 to be S and R, respectively. Nevertheless, this absolute configuration of the molecule needs further verifcatio.

Experimental

5'-hydroxyzearalenol was isolated from 1L culture of a marine-derived fungus 05ABR26 (a Fusarium sp.), affording 9.1 mg by repeated column chromatography on Sephadex LH-20 and Silica gel. Single crystals suitable for X-ray analysis were grown by slow evaporation of a solution of 5'- hydroxyzearalenol in n-hexane:acetone (3:1 v/v) at room temperature.

Refinement

The H atoms of the water molecule were located in a different Fourier map. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H distance of 0.82 Å and C—H distances in the range 0.93–0.98 Å. The Uiso(H) values were constrained to be 1.5Ueq(carrier atom) for hydroxy and methyl H atoms and 1.2Ueq(carrier atom) for the remaining H atoms.

Figures

Fig. 1.
A view of the asymmetric unit of 5'-hydroxyzearalenol monohydrate showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.
Fig. 2.
The molecular packing diagram of 5'-hydroxyzearalenol monohydrate viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H24O6·H2OF(000) = 760
Mr = 354.39Dx = 1.312 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 687 reflections
a = 18.23 (1) Åθ = 2.3–26.4°
b = 8.078 (6) ŵ = 0.10 mm1
c = 13.86 (1) ÅT = 293 K
β = 118.441 (7)°Prismatic, colorless
V = 1795 (2) Å30.20 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2076 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
graphiteRint = 0.081
[var phi] and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→22
Tmin = 0.980, Tmax = 0.995k = −10→4
4458 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0914P)2] where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.87040 (13)0.9829 (4)0.35095 (16)0.0406 (6)
H10.90910.94900.40850.061*
O20.57709 (13)1.0102 (4)0.17058 (17)0.0424 (6)
H20.58571.01880.11790.064*
O30.94597 (14)0.9208 (5)0.55690 (19)0.0555 (9)
O40.88077 (12)0.9851 (4)0.65316 (15)0.0393 (6)
O50.72723 (16)1.0005 (5)0.9735 (2)0.0633 (10)
H50.76090.93641.01890.095*
O60.66693 (14)1.3026 (3)0.84561 (17)0.0397 (6)
H60.64041.36230.79230.060*
C10.79948 (18)0.9669 (4)0.4619 (2)0.0303 (7)
C20.79927 (18)0.9842 (4)0.3594 (2)0.0323 (6)
C30.72615 (18)1.0056 (4)0.2630 (2)0.0325 (7)
H30.72751.02290.19750.039*
C40.65057 (18)1.0013 (4)0.2639 (2)0.0329 (7)
C50.64859 (18)0.9820 (5)0.3630 (2)0.0339 (7)
H5A0.59740.98070.36260.041*
C60.72118 (18)0.9649 (4)0.4615 (2)0.0307 (6)
C70.88176 (18)0.9540 (5)0.5598 (2)0.0348 (8)
C80.95973 (17)0.9717 (5)0.7566 (2)0.0371 (8)
H80.99290.88130.75010.044*
C91.0079 (2)1.1292 (6)0.7784 (3)0.0518 (10)
H9A0.97481.21920.78170.078*
H9B1.02141.14880.72040.078*
H9C1.05831.12070.84700.078*
C100.9324 (2)0.9239 (5)0.8403 (3)0.0403 (8)
H10A0.98170.90750.91070.048*
H10B0.90310.81900.81860.048*
C110.8761 (2)1.0503 (5)0.8547 (3)0.0390 (8)
H11A0.83911.09990.78430.047*
H11B0.91001.13760.90370.047*
C120.8244 (2)0.9678 (5)0.9017 (3)0.0384 (8)
H12A0.79210.87860.85310.046*
H12B0.86210.91890.97210.046*
C130.76515 (19)1.0832 (5)0.9174 (2)0.0372 (8)
H130.79851.17460.96430.045*
C140.69633 (19)1.1591 (4)0.8122 (2)0.0319 (7)
H140.72181.19760.76800.038*
C150.6218 (2)1.0502 (5)0.7392 (3)0.0402 (8)
H15A0.60400.99340.78610.048*
H15B0.57661.12250.69140.048*
C160.6333 (2)0.9202 (5)0.6675 (3)0.0394 (8)
H16A0.67790.84640.71500.047*
H16B0.58260.85490.63200.047*
C170.65289 (19)0.9846 (5)0.5803 (2)0.0365 (7)
H170.62111.07230.53720.044*
C180.71206 (18)0.9253 (4)0.5608 (2)0.0320 (7)
H180.75090.85370.61240.038*
O70.58905 (17)1.0465 (9)−0.0084 (2)0.104 (2)
H7X0.6347 (15)1.031 (7)−0.011 (3)0.065 (14)*
H7Y0.5433 (15)1.057 (9)−0.067 (3)0.084 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0283 (10)0.0658 (18)0.0285 (10)0.0009 (12)0.0143 (9)−0.0025 (13)
O20.0303 (10)0.0656 (19)0.0266 (10)0.0022 (12)0.0099 (9)0.0024 (12)
O30.0308 (11)0.105 (3)0.0311 (11)0.0088 (14)0.0150 (10)−0.0045 (14)
O40.0271 (9)0.0652 (16)0.0222 (10)0.0050 (12)0.0088 (8)−0.0037 (12)
O50.0505 (15)0.096 (3)0.0577 (16)0.0275 (17)0.0372 (14)0.0453 (18)
O60.0403 (13)0.0473 (14)0.0316 (11)0.0104 (11)0.0172 (11)0.0001 (11)
C10.0296 (13)0.0349 (18)0.0239 (12)0.0002 (13)0.0108 (11)−0.0028 (13)
C20.0337 (14)0.0363 (17)0.0280 (13)−0.0036 (15)0.0156 (12)−0.0052 (15)
C30.0355 (15)0.0392 (18)0.0258 (12)0.0005 (14)0.0170 (12)−0.0004 (13)
C40.0308 (14)0.0371 (18)0.0265 (13)0.0024 (14)0.0102 (12)−0.0022 (13)
C50.0271 (13)0.0457 (18)0.0303 (14)0.0007 (14)0.0147 (12)−0.0017 (15)
C60.0328 (14)0.0345 (17)0.0261 (13)0.0015 (13)0.0150 (12)−0.0022 (12)
C70.0297 (14)0.048 (2)0.0275 (14)0.0016 (14)0.0139 (12)−0.0025 (14)
C80.0240 (13)0.057 (2)0.0248 (13)0.0109 (15)0.0072 (12)0.0000 (15)
C90.0408 (19)0.071 (3)0.047 (2)−0.0069 (19)0.0238 (18)−0.013 (2)
C100.0356 (16)0.053 (2)0.0302 (15)0.0129 (16)0.0139 (13)0.0081 (15)
C110.0377 (16)0.045 (2)0.0397 (16)0.0036 (15)0.0230 (15)0.0020 (15)
C120.0326 (14)0.045 (2)0.0354 (15)0.0080 (15)0.0141 (13)0.0100 (15)
C130.0317 (15)0.054 (2)0.0304 (15)0.0018 (15)0.0182 (14)0.0059 (14)
C140.0310 (14)0.0415 (18)0.0287 (14)0.0015 (13)0.0187 (13)0.0002 (13)
C150.0379 (16)0.053 (2)0.0370 (16)−0.0036 (16)0.0234 (15)−0.0040 (16)
C160.0408 (17)0.0452 (19)0.0349 (16)−0.0130 (16)0.0202 (15)−0.0087 (15)
C170.0375 (15)0.0431 (18)0.0295 (14)−0.0029 (15)0.0165 (13)−0.0035 (15)
C180.0291 (14)0.0382 (17)0.0247 (14)−0.0044 (13)0.0096 (12)−0.0011 (12)
O70.0298 (13)0.252 (6)0.0303 (13)0.005 (3)0.0133 (12)0.005 (3)

Geometric parameters (Å, °)

O1—C21.356 (4)C9—H9C0.9599
O1—H10.8200C10—C111.526 (5)
O2—C41.349 (4)C10—H10A0.9700
O2—H20.8200C10—H10B0.9700
O3—C71.220 (4)C11—C121.532 (5)
O4—C71.327 (4)C11—H11A0.9700
O4—C81.474 (3)C11—H11B0.9700
O5—C131.429 (4)C12—C131.518 (5)
O5—H50.8200C12—H12A0.9700
O6—C141.443 (4)C12—H12B0.9700
O6—H60.8200C13—C141.527 (4)
C1—C61.424 (4)C13—H130.9800
C1—C21.426 (4)C14—C151.528 (5)
C1—C71.470 (4)C14—H140.9800
C2—C31.377 (4)C15—C161.526 (5)
C3—C41.384 (4)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.400 (4)C16—C171.507 (4)
C5—C61.383 (4)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C6—C181.497 (4)C17—C181.321 (5)
C8—C91.492 (6)C17—H170.9300
C8—C101.514 (5)C18—H180.9300
C8—H80.9800O7—H7X0.857 (18)
C9—H9A0.9599O7—H7Y0.844 (18)
C9—H9B0.9599
C2—O1—H1109.5C10—C11—C12110.7 (3)
C4—O2—H2109.5C10—C11—H11A109.5
C7—O4—C8118.3 (2)C12—C11—H11A109.5
C13—O5—H5109.5C10—C11—H11B109.5
C14—O6—H6109.5C12—C11—H11B109.5
C6—C1—C2118.0 (3)H11A—C11—H11B108.1
C6—C1—C7125.7 (3)C13—C12—C11114.7 (3)
C2—C1—C7116.3 (3)C13—C12—H12A108.6
O1—C2—C3116.2 (2)C11—C12—H12A108.6
O1—C2—C1122.4 (3)C13—C12—H12B108.6
C3—C2—C1121.4 (3)C11—C12—H12B108.6
C2—C3—C4119.8 (3)H12A—C12—H12B107.6
C2—C3—H3120.1O5—C13—C12110.6 (3)
C4—C3—H3120.1O5—C13—C14108.5 (2)
O2—C4—C3121.9 (3)C12—C13—C14115.3 (3)
O2—C4—C5117.9 (3)O5—C13—H13107.4
C3—C4—C5120.1 (3)C12—C13—H13107.4
C6—C5—C4121.3 (3)C14—C13—H13107.4
C6—C5—H5A119.3O6—C14—C13106.2 (2)
C4—C5—H5A119.3O6—C14—C15109.1 (3)
C5—C6—C1119.3 (3)C13—C14—C15117.9 (3)
C5—C6—C18117.1 (3)O6—C14—H14107.8
C1—C6—C18123.2 (3)C13—C14—H14107.8
O3—C7—O4122.2 (3)C15—C14—H14107.8
O3—C7—C1124.0 (3)C16—C15—C14118.3 (3)
O4—C7—C1113.9 (2)C16—C15—H15A107.7
O4—C8—C9110.0 (3)C14—C15—H15A107.7
O4—C8—C10103.8 (2)C16—C15—H15B107.7
C9—C8—C10116.0 (3)C14—C15—H15B107.7
O4—C8—H8108.9H15A—C15—H15B107.1
C9—C8—H8108.9C17—C16—C15116.3 (3)
C10—C8—H8108.9C17—C16—H16A108.2
C8—C9—H9A109.5C15—C16—H16A108.2
C8—C9—H9B109.5C17—C16—H16B108.2
H9A—C9—H9B109.5C15—C16—H16B108.2
C8—C9—H9C109.5H16A—C16—H16B107.4
H9A—C9—H9C109.5C18—C17—C16124.6 (3)
H9B—C9—H9C109.5C18—C17—H17117.7
C8—C10—C11114.6 (3)C16—C17—H17117.7
C8—C10—H10A108.6C17—C18—C6124.7 (3)
C11—C10—H10A108.6C17—C18—H18117.6
C8—C10—H10B108.6C6—C18—H18117.6
C11—C10—H10B108.6H7X—O7—H7Y121 (3)
H10A—C10—H10B107.6
C6—C1—C2—O1−178.2 (3)C2—C1—C7—O4161.9 (3)
C7—C1—C2—O12.4 (5)C7—O4—C8—C984.2 (4)
C6—C1—C2—C32.7 (5)C7—O4—C8—C10−151.0 (3)
C7—C1—C2—C3−176.7 (3)O4—C8—C10—C11−61.1 (4)
O1—C2—C3—C4177.3 (3)C9—C8—C10—C1159.7 (4)
C1—C2—C3—C4−3.6 (5)C8—C10—C11—C12157.2 (3)
C2—C3—C4—O2−175.3 (3)C10—C11—C12—C13−179.1 (3)
C2—C3—C4—C52.6 (5)C11—C12—C13—O5−173.0 (3)
O2—C4—C5—C6177.2 (3)C11—C12—C13—C1463.5 (4)
C3—C4—C5—C6−0.8 (6)O5—C13—C14—O674.9 (4)
C4—C5—C6—C1−0.1 (6)C12—C13—C14—O6−160.5 (3)
C4—C5—C6—C18−173.1 (3)O5—C13—C14—C15−47.6 (4)
C2—C1—C6—C5−0.9 (5)C12—C13—C14—C1577.0 (4)
C7—C1—C6—C5178.5 (3)O6—C14—C15—C16162.4 (3)
C2—C1—C6—C18171.7 (3)C13—C14—C15—C16−76.5 (4)
C7—C1—C6—C18−8.9 (5)C14—C15—C16—C17−63.5 (4)
C8—O4—C7—O3−2.6 (6)C15—C16—C17—C18133.7 (4)
C8—O4—C7—C1178.6 (3)C16—C17—C18—C6167.4 (3)
C6—C1—C7—O3163.7 (4)C5—C6—C18—C17−37.0 (5)
C2—C1—C7—O3−16.9 (5)C1—C6—C18—C17150.3 (4)
C6—C1—C7—O4−17.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.852.560 (4)144.
O2—H2···O70.821.792.608 (4)172.
C3—H3···O70.932.773.398 (4)125.
C9—H9B···O30.962.733.198 (5)111.
O1—H1···O3i0.822.463.003 (4)125.
O7—H7Y···O2ii0.84 (2)2.01 (3)2.798 (4)156 (6)
O5—H5···O6iii0.822.022.821 (4)166.
O6—H6···O1iv0.822.132.871 (4)149.
C3—H3···O6v0.932.883.398 (4)116.
C10—H10B···O2v0.972.523.346 (6)144.
O7—H7X···O5vi0.86 (2)1.82 (2)2.674 (4)176 (4)

Symmetry codes: (i) −x+2, y, −z+1; (ii) −x+1, y, −z; (iii) −x+3/2, y−1/2, −z+2; (iv) −x+3/2, y+1/2, −z+1; (v) −x+3/2, y−1/2, −z+1; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2058).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2000). SMART and SAINT Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753–13764.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, L. L., Gai, Y., Kobayashi, H., Hu, C. Q. & Zhang, H. P. (2008). Chin. Chem. Lett. Submitted.
  • Zinedine, A., Sriano, J. M., Moltö, J. C. & Mañes, J. (2007). Food Chem. Toxicol.45, 1–18. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography