PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m757.
Published online 2008 May 3. doi:  10.1107/S1600536808012427
PMCID: PMC2961560

cis-Dichloridobis(1,10-phenanthroline-κ2 N,N′)manganese(II)–2,6-dihydroxy­benzoic acid–water (2/1/4)

Abstract

In the crystal structure of the title compound, [MnCl2(C12H8N2)2]·0.5C7H6O4·2H2O, the MnII complex assumes a distorted octa­hedral geometry formed by two chloride anions and two phenanthroline (phen) ligands. The 2,6-dihydroxy­benzoic acid mol­ecule is disordered about an inversion center. The face-to-face separations of 3.540 (11) and 3.429 (8) Å between parallel phen ligands indicate the existence of π–π stacking between adjacent MnII complexes. Uncoordinated water mol­ecules are linked with complex and dihydroxy­benzoic acid mol­ecules via O—H(...)Cl and O—H(...)O hydrogen bonds.

Related literature

For general background, see: Su & Xu (2004 [triangle]). For related structures, see: McCann et al. (1998 [triangle]); Pan & Xu (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m757-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C12H8N2)2]·0.5C7H6O4·2H2O
  • M r = 599.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m757-efi1.jpg
  • a = 9.757 (2) Å
  • b = 11.985 (3) Å
  • c = 13.261 (3) Å
  • α = 63.465 (17)°
  • β = 83.931 (18)°
  • γ = 76.819 (18)°
  • V = 1350.8 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 295 (2) K
  • 0.42 × 0.36 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.735, T max = 0.860
  • 14401 measured reflections
  • 4680 independent reflections
  • 3662 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.191
  • S = 1.08
  • 4680 reflections
  • 355 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −1.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012427/ng2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012427/ng2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004), the title compound incorporating 1,10-phenanthroline (phen) ligand has recently prepared and its crystal structure is reported here.

The crystal consists of MnII complex, uncoordinated dihydroxybenzoic acid and lattice water molecules (Fig. 1). The MnII complex assumes a distorted octahedral geometry formed by two Cl- anions and two phen ligands (Table 1), similar to those found in crystal structure of cis-dichloro-bis(1,10-phenanthroline-κ2N,N')manganese(II) (Pan & Xu, 2005; McCann et al., 1998). The two phen ligands of the complex are nearly perpendicular to each other with a dihedral angle of 83.50 (6)°. π-π stacking is observed in the crystal structure (Fig. 2). The face-to-face separation between parallel N2-containing phen and N2i-containing phen ligands is 3.540 (11) Å, while the face-to-face separation between parallel N3-phen and N3ii-phen ligands is 3.429 (8) Å [symmetry codes: (i) 1 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].

The C30—O4 bond distance is significantly longer than C30—O3 bond distance (Table 1), which suggests that dihydroxybenzoic acid is a neutral molecule in the crystal. The uncoordinated dihydroxybenzoic acid molecule is located in a cavity formed by MnII complexes, and is close to an inversion center (Fig. 3). Therefore dihydroxybenzoic acid is disordered in the crystal with different spatial orientations. Lattice water molecules are linked with MnII complex and uncoordinated dihydroxybenzoic acid via O—H···Cl and O—H···O hydrogen bonding, respectively (Table 2 and Fig. 1).

Experimental

Each reagent was commercially available and of analytical grade. MnCl2.4H2O (0.20 g, 1 mmol), 2,6-dihydroxybenzoic acid (0.15 g 1 mmol), 1,10-phenanthroline (0.39 g, 2 mmol) and Na2CO3 (0.053 g, 0.5 mmol) were dissolved in water-ethanol solution (15 ml, 10:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Yellow single crystals were obtained from the filtrate after 2 d.

Refinement

The dihydroxybenzoic acid is close to an inversion center and was refined with half site occupancy; the benzene ring was refined as a rigid group with the same displacement parameter for C atoms of the benzene ring. H atoms bonded to O atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
Fig. 2.
A diagram showing π-π stacking between phen ligands [symmetry codes: (i) 1 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].
Fig. 3.
A packing diagram of the unit cell, H atoms and one of disordered components of dihydroxybenzoic acid have been omitted for clarity.

Crystal data

[MnCl2(C12H8N2)2]·0.5C7H6O4·2H2OZ = 2
Mr = 599.34F000 = 614
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.757 (2) ÅCell parameters from 6825 reflections
b = 11.985 (3) Åθ = 1.8–25.0º
c = 13.261 (3) ŵ = 0.73 mm1
α = 63.465 (17)ºT = 295 (2) K
β = 83.931 (18)ºPrism, yellow
γ = 76.819 (18)º0.42 × 0.36 × 0.20 mm
V = 1350.8 (6) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer4680 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
Detector resolution: 10.00 pixels mm-1θmax = 25.0º
T = 295(2) Kθmin = 1.7º
ω scansh = −10→11
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −12→13
Tmin = 0.735, Tmax = 0.860l = −15→15
14401 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.191  w = 1/[σ2(Fo2) + (0.115P)2 + 0.6925P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4680 reflectionsΔρmax = 0.55 e Å3
355 parametersΔρmin = −1.16 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn0.81692 (6)0.12805 (5)0.21903 (4)0.0452 (2)
Cl10.9994 (2)0.09801 (17)0.08753 (14)0.1086 (6)
Cl20.93733 (10)−0.05166 (9)0.38297 (8)0.0543 (3)
N10.8875 (3)0.2844 (3)0.2384 (3)0.0512 (8)
N20.7264 (4)0.3198 (3)0.0676 (3)0.0558 (8)
N30.6117 (3)0.1579 (3)0.3159 (2)0.0467 (7)
N40.6685 (3)0.0238 (3)0.1901 (3)0.0531 (8)
O10.4543 (14)0.3988 (12)0.7173 (9)0.132 (4)0.50
H1C0.37090.37810.71490.197*0.50
O20.4410 (16)0.5884 (14)0.3174 (9)0.146 (4)0.50
H2C0.35510.56900.32740.220*0.50
O30.2390 (11)0.4282 (12)0.6173 (11)0.135 (4)0.50
O40.2332 (11)0.5254 (11)0.4305 (10)0.127 (3)0.50
H4A0.14100.53280.43540.191*0.50
O1W0.0193 (5)0.2911 (4)0.6726 (4)0.1147 (15)
H1A0.06060.35310.64490.172*
H1B−0.04220.30810.71160.172*
O2W0.8797 (5)0.1644 (5)−0.1317 (3)0.1292 (19)
H2A0.90090.0907−0.12910.194*
H2B0.91630.1605−0.07670.194*
C10.9627 (5)0.2673 (5)0.3244 (4)0.0654 (12)
H10.98190.18640.38420.078*
C21.0141 (6)0.3642 (6)0.3295 (6)0.0855 (16)
H21.06530.34830.39150.103*
C30.9875 (6)0.4838 (6)0.2409 (6)0.0879 (17)
H31.02240.54950.24160.105*
C40.9086 (5)0.5059 (4)0.1508 (5)0.0719 (13)
C50.8757 (7)0.6265 (5)0.0563 (6)0.099 (2)
H50.91010.69430.05300.119*
C60.7955 (8)0.6450 (5)−0.0291 (6)0.101 (2)
H60.77540.7256−0.08910.121*
C70.7401 (5)0.5436 (5)−0.0299 (4)0.0750 (15)
C80.6572 (7)0.5591 (6)−0.1146 (4)0.096 (2)
H80.63440.6384−0.17580.115*
C90.6079 (6)0.4583 (7)−0.1093 (4)0.095 (2)
H90.55030.4694−0.16610.115*
C100.6453 (5)0.3365 (5)−0.0163 (4)0.0746 (14)
H100.61350.2676−0.01350.089*
C110.7730 (4)0.4222 (4)0.0615 (3)0.0560 (10)
C120.8574 (4)0.4022 (4)0.1523 (3)0.0529 (9)
C130.5854 (4)0.2205 (4)0.3785 (3)0.0559 (10)
H130.65230.26380.38050.067*
C140.4616 (5)0.2253 (4)0.4424 (4)0.0623 (11)
H140.44720.27060.48550.075*
C150.3644 (5)0.1629 (4)0.4398 (3)0.0615 (11)
H150.28210.16440.48200.074*
C160.3863 (4)0.0947 (4)0.3733 (3)0.0530 (10)
C170.2874 (4)0.0270 (4)0.3665 (4)0.0643 (12)
H170.20360.02660.40710.077*
C180.3139 (5)−0.0362 (5)0.3023 (4)0.0709 (13)
H180.2469−0.07800.29800.085*
C190.4431 (4)−0.0408 (4)0.2403 (4)0.0608 (11)
C200.4783 (5)−0.1079 (5)0.1742 (4)0.0751 (13)
H200.4143−0.15070.16690.090*
C210.6039 (6)−0.1109 (6)0.1212 (5)0.0800 (15)
H210.6277−0.15750.07940.096*
C220.6973 (5)−0.0441 (5)0.1296 (4)0.0664 (12)
H220.7833−0.04620.09210.080*
C230.5434 (4)0.0246 (4)0.2452 (3)0.0491 (9)
C240.5137 (4)0.0953 (3)0.3123 (3)0.0453 (8)
C300.2957 (16)0.4791 (16)0.5273 (14)0.098 (4)0.50
C310.4417 (8)0.4897 (11)0.5167 (7)0.0936 (16)0.50
C320.5181 (10)0.4401 (9)0.6154 (6)0.0936 (16)0.50
C330.6607 (9)0.4420 (9)0.6100 (7)0.0936 (16)0.50
H330.71190.40880.67610.112*0.50
C340.7267 (8)0.4935 (10)0.5060 (9)0.0936 (16)0.50
H340.82210.49480.50240.112*0.50
C350.6503 (10)0.5431 (9)0.4073 (7)0.0936 (16)0.50
H350.69450.57750.33770.112*0.50
C360.5077 (10)0.5412 (9)0.4127 (6)0.0936 (16)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn0.0442 (4)0.0484 (4)0.0457 (3)−0.0130 (3)0.0024 (2)−0.0218 (3)
Cl10.1378 (15)0.1000 (12)0.0928 (10)−0.0370 (10)0.0080 (9)−0.0421 (9)
Cl20.0508 (6)0.0569 (6)0.0510 (5)−0.0092 (4)−0.0020 (4)−0.0203 (4)
N10.0456 (18)0.0515 (19)0.0585 (19)−0.0100 (14)0.0004 (14)−0.0260 (16)
N20.0507 (19)0.061 (2)0.0484 (17)−0.0017 (16)−0.0026 (14)−0.0216 (16)
N30.0403 (17)0.0464 (17)0.0496 (16)−0.0062 (13)0.0019 (13)−0.0194 (14)
N40.0447 (18)0.065 (2)0.0572 (18)−0.0139 (15)0.0030 (14)−0.0323 (17)
O10.140 (10)0.152 (9)0.093 (7)−0.070 (8)0.013 (6)−0.030 (6)
O20.171 (12)0.210 (13)0.086 (7)−0.077 (10)0.002 (7)−0.071 (8)
O30.103 (7)0.172 (10)0.165 (10)−0.063 (7)0.031 (7)−0.095 (9)
O40.095 (7)0.158 (9)0.146 (9)−0.001 (6)−0.006 (7)−0.091 (8)
O1W0.141 (4)0.098 (3)0.126 (4)−0.037 (3)0.024 (3)−0.068 (3)
O2W0.099 (3)0.146 (4)0.077 (2)0.022 (3)0.002 (2)−0.014 (3)
C10.062 (3)0.068 (3)0.078 (3)−0.010 (2)−0.013 (2)−0.041 (2)
C20.070 (3)0.097 (4)0.122 (5)−0.007 (3)−0.015 (3)−0.078 (4)
C30.067 (3)0.089 (4)0.144 (5)−0.026 (3)0.008 (3)−0.079 (4)
C40.064 (3)0.049 (3)0.105 (4)−0.015 (2)0.026 (3)−0.040 (3)
C50.099 (5)0.055 (3)0.127 (5)−0.027 (3)0.038 (4)−0.028 (3)
C60.112 (5)0.047 (3)0.101 (4)−0.009 (3)0.040 (4)−0.008 (3)
C70.070 (3)0.059 (3)0.061 (3)0.005 (2)0.018 (2)−0.007 (2)
C80.098 (4)0.085 (4)0.057 (3)0.019 (3)0.004 (3)−0.009 (3)
C90.083 (4)0.128 (5)0.050 (3)0.025 (4)−0.018 (2)−0.035 (3)
C100.071 (3)0.093 (4)0.052 (2)0.005 (3)−0.011 (2)−0.032 (2)
C110.053 (2)0.049 (2)0.052 (2)−0.0009 (18)0.0151 (18)−0.0174 (18)
C120.045 (2)0.047 (2)0.064 (2)−0.0090 (17)0.0112 (18)−0.0249 (19)
C130.055 (2)0.056 (2)0.058 (2)−0.0078 (19)0.0042 (18)−0.028 (2)
C140.066 (3)0.059 (3)0.058 (2)−0.001 (2)0.007 (2)−0.028 (2)
C150.049 (2)0.060 (3)0.056 (2)0.003 (2)0.0095 (18)−0.017 (2)
C160.039 (2)0.056 (2)0.047 (2)−0.0011 (17)−0.0008 (16)−0.0113 (18)
C170.042 (2)0.073 (3)0.067 (3)−0.013 (2)0.0020 (19)−0.021 (2)
C180.047 (2)0.089 (3)0.074 (3)−0.025 (2)−0.005 (2)−0.027 (3)
C190.051 (2)0.070 (3)0.063 (2)−0.019 (2)−0.0091 (19)−0.026 (2)
C200.066 (3)0.093 (4)0.088 (3)−0.033 (3)−0.004 (2)−0.050 (3)
C210.079 (3)0.103 (4)0.091 (3)−0.030 (3)0.003 (3)−0.066 (3)
C220.065 (3)0.086 (3)0.071 (3)−0.025 (2)0.009 (2)−0.052 (3)
C230.043 (2)0.055 (2)0.0457 (19)−0.0085 (16)−0.0057 (15)−0.0180 (17)
C240.0361 (19)0.049 (2)0.0396 (17)−0.0025 (15)−0.0032 (14)−0.0116 (16)
C300.076 (8)0.114 (11)0.116 (12)−0.018 (8)0.007 (8)−0.062 (10)
C310.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)
C320.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)
C330.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)
C340.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)
C350.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)
C360.097 (4)0.090 (3)0.101 (4)−0.021 (3)0.013 (3)−0.050 (4)

Geometric parameters (Å, °)

Mn—N12.260 (3)C7—C111.408 (6)
Mn—N22.328 (3)C8—C91.370 (9)
Mn—N32.308 (3)C8—H80.9300
Mn—N42.275 (3)C9—C101.425 (8)
Mn—Cl12.440 (2)C9—H90.9300
Mn—Cl22.4387 (13)C10—H100.9300
N1—C11.334 (5)C11—C121.430 (6)
N1—C121.351 (5)C13—C141.405 (6)
N2—C101.350 (6)C13—H130.9300
N2—C111.370 (6)C14—C151.348 (7)
N3—C131.319 (5)C14—H140.9300
N3—C241.360 (5)C15—C161.419 (6)
N4—C221.347 (5)C15—H150.9300
N4—C231.355 (5)C16—C241.410 (5)
O1—C321.351 (12)C16—C171.428 (6)
O1—H1C0.9109C17—C181.344 (7)
O2—C361.307 (13)C17—H170.9300
O2—H2C0.9016C18—C191.434 (7)
O3—C301.211 (17)C18—H180.9300
O4—C301.305 (17)C19—C201.405 (7)
O4—H4A0.8817C19—C231.409 (6)
O1W—H1A0.8434C20—C211.348 (7)
O1W—H1B0.8012C20—H200.9300
O2W—H2A0.8461C21—C221.385 (7)
O2W—H2B0.8246C21—H210.9300
C1—C21.396 (7)C22—H220.9300
C1—H10.9300C23—C241.449 (5)
C2—C31.376 (8)C30—C311.445 (15)
C2—H20.9300C31—C321.3900
C3—C41.381 (8)C31—C361.3900
C3—H30.9300C32—C331.3900
C4—C51.421 (8)C33—C341.3900
C4—C121.432 (6)C33—H330.9300
C5—C61.351 (10)C34—C351.3900
C5—H50.9300C34—H340.9300
C6—C71.443 (9)C35—C361.3900
C6—H60.9300C35—H350.9300
C7—C81.373 (8)
N1—Mn—N4158.51 (12)N2—C11—C12117.6 (3)
N1—Mn—N390.22 (12)C7—C11—C12120.3 (5)
N4—Mn—N373.23 (12)N1—C12—C11118.7 (4)
N1—Mn—N272.54 (12)N1—C12—C4121.2 (4)
N4—Mn—N292.82 (13)C11—C12—C4120.1 (4)
N3—Mn—N287.93 (11)N3—C13—C14123.4 (4)
N1—Mn—Cl297.72 (9)N3—C13—H13118.3
N4—Mn—Cl297.17 (9)C14—C13—H13118.3
N3—Mn—Cl294.48 (8)C15—C14—C13118.5 (4)
N2—Mn—Cl2170.00 (10)C15—C14—H14120.7
N1—Mn—Cl198.05 (9)C13—C14—H14120.7
N4—Mn—Cl196.38 (9)C14—C15—C16120.6 (4)
N3—Mn—Cl1167.55 (9)C14—C15—H15119.7
N2—Mn—Cl185.73 (9)C16—C15—H15119.7
Cl2—Mn—Cl193.61 (6)C24—C16—C15116.8 (4)
C1—N1—C12118.4 (4)C24—C16—C17119.8 (4)
C1—N1—Mn125.0 (3)C15—C16—C17123.4 (4)
C12—N1—Mn116.5 (3)C18—C17—C16120.9 (4)
C10—N2—C11118.8 (4)C18—C17—H17119.6
C10—N2—Mn126.9 (3)C16—C17—H17119.6
C11—N2—Mn114.0 (3)C17—C18—C19121.6 (4)
C13—N3—C24118.4 (3)C17—C18—H18119.2
C13—N3—Mn127.1 (3)C19—C18—H18119.2
C24—N3—Mn114.3 (2)C20—C19—C23116.7 (4)
C22—N4—C23117.9 (4)C20—C19—C18124.2 (4)
C22—N4—Mn126.1 (3)C23—C19—C18119.1 (4)
C23—N4—Mn115.9 (3)C21—C20—C19120.6 (4)
C32—O1—H1C111.8C21—C20—H20119.7
C36—O2—H2C111.9C19—C20—H20119.7
C30—O4—H4A114.1C20—C21—C22119.5 (5)
H1A—O1W—H1B105.4C20—C21—H21120.2
H2A—O2W—H2B107.1C22—C21—H21120.2
N1—C1—C2123.5 (5)N4—C22—C21122.5 (4)
N1—C1—H1118.2N4—C22—H22118.7
C2—C1—H1118.2C21—C22—H22118.7
C3—C2—C1118.6 (5)N4—C23—C19122.7 (4)
C3—C2—H2120.7N4—C23—C24117.9 (3)
C1—C2—H2120.7C19—C23—C24119.4 (4)
C2—C3—C4119.7 (5)N3—C24—C16122.3 (4)
C2—C3—H3120.2N3—C24—C23118.6 (3)
C4—C3—H3120.2C16—C24—C23119.2 (4)
C3—C4—C5123.3 (5)O3—C30—O4123.6 (16)
C3—C4—C12118.6 (5)O3—C30—C31123.0 (14)
C5—C4—C12118.1 (6)O4—C30—C31113.3 (14)
C6—C5—C4121.5 (6)C32—C31—C36120.0
C6—C5—H5119.3C32—C31—C30117.6 (8)
C4—C5—H5119.3C36—C31—C30122.4 (8)
C5—C6—C7122.1 (5)O1—C32—C31121.1 (8)
C5—C6—H6119.0O1—C32—C33118.7 (8)
C7—C6—H6119.0C31—C32—C33120.0
C8—C7—C11118.4 (6)C32—C33—C34120.0
C8—C7—C6123.7 (5)C32—C33—H33120.0
C11—C7—C6117.9 (5)C34—C33—H33120.0
C9—C8—C7120.4 (5)C35—C34—C33120.0
C9—C8—H8119.8C35—C34—H34120.0
C7—C8—H8119.8C33—C34—H34120.0
C8—C9—C10119.5 (5)C36—C35—C34120.0
C8—C9—H9120.2C36—C35—H35120.0
C10—C9—H9120.2C34—C35—H35120.0
N2—C10—C9120.8 (6)O2—C36—C35117.5 (9)
N2—C10—H10119.6O2—C36—C31122.5 (9)
C9—C10—H10119.6C35—C36—C31120.0
N2—C11—C7122.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O30.842.062.834 (13)152
O1W—H1B···O2Wi0.802.222.752 (6)124
O2W—H2A···Cl1ii0.852.092.904 (6)162
O2W—H2B···Cl10.822.142.946 (4)164
O1—H1C···O30.911.732.476 (18)137
O2—H2C···O40.901.692.444 (19)139
O4—H4A···O1Wiii0.882.282.886 (13)125
C3—H3···O1Wiv0.932.573.356 (9)143
C5—H5···Cl1v0.932.643.427 (7)143
C9—H9···O1vi0.932.413.275 (15)154
C9—H9···O2vii0.932.393.152 (15)140
C15—H15···Cl2viii0.932.823.674 (5)153

Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z; (vi) x, y, z−1; (vii) −x+1, −y+1, −z; (viii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2452).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24–29.
  • Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740–m742.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography