PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m753.
Published online 2008 May 3. doi:  10.1107/S1600536808012166
PMCID: PMC2961558

catena-Poly[[aqua­glycolatocopper(II)]-μ-chlorido]

Abstract

In the crystal structure of the title compound, [Cu(C2H3O3)Cl(H2O)]n, the CuII ion is five-coordinate in a distorted square-pyramidal geometry. Two O atoms from a chelating glycolate anion, an O atom from a coordinated water mol­ecule and a chloride anion comprise the basal plane. A chloride ion from a neighbouring unit occupies the apical position and these Cu—Cl—Cu bridges link the aqua­glycolatocopper(II) units into one-dimensional chains along the [001] direction. These chains are connected by O—H(...)O and O—H(...)Cl hydrogen bonds, forming an infinite three-dimensional polymeric network.

Related literature

For background to the coordination chemistry of glycolic acid, see: Gao et al. (2004 [triangle]). For related structures, see: Dengel et al. (198 [triangle]7); Lanfranchi et al. (1993 [triangle]); Medina et al. (2000 [triangle]); Prout et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m753-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O3)Cl(H2O)]
  • M r = 192.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m753-efi3.jpg
  • a = 7.6296 (2) Å
  • b = 10.0896 (3) Å
  • c = 7.4603 (2) Å
  • β = 109.632 (1)°
  • V = 540.91 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.45 mm−1
  • T = 100.0 (1) K
  • 0.56 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.189, T max = 0.512 (expected range = 0.174–0.470)
  • 10874 measured reflections
  • 2372 independent reflections
  • 2147 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.058
  • S = 1.05
  • 2372 reflections
  • 93 parameters
  • All H-atom parameters refined
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012166/sj2487sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012166/sj2487Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and the Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post–doctoral research fellowship.

supplementary crystallographic information

Comment

Glycolic acid (2-hydroxyethanoic acid) is a biologically active compound and has versatile binding modes for metals. (Gao et al., 2004). A number of structures of metal complexes containing the glycolate ligand have been reported (Medina et al., 2000; Prout et al.1993) with the chelating glycolate ligand coordinating to metal ions through the hydroxy and carboxy groups. In some coordination modes, the hydroxy groups of the glycolate are deprotonated (Dengel et al.,1987; Lanfranchi et al., 1993). In this paper we report the structure of a novel three dimensional polymeric chloro-bridged copper complex with glycolate and water as auxiliary ligands.

In the asymmetric unit of the title compound, the CuII ion is five–coordinated with a distorted square–pyramidal geometry. The basal plane is formed by atoms O1 and O2 from the glycolate ligand in a chelating mode, a water oxygen and a chloride anion. Cl- anions from neighbouring molecules link the [C2H5ClCuO4] units into polymeric chains along the [0 0 1] direction. The five membered ring [Cu1—O2—C2—C1—O1] is essentially planar with the maximum deviation from planarity being 0.008 (2)Å for the atom O1. The atom Cu1 is displaced by -0.1603 (1)Å out of the basal plane of the square pyramid towards atom Cl1.

The molecules are linked into one dimensional polymeric chains along the [0 0 1] direction through bridging chloride ions. Adjacent chains are interconnected by O—H···O, and O—H···Cl hydrogen bonds to form an infinite three dimensional polymeric network.

Experimental

Equimolar amounts of glycolic acid and CuCl2 were dissolved in ethanol. The solution was refluxed at a temperature of 333°K for a period of 48 h. The clear blue colour solution was allowed to evaporate slowly yielding blue crystals of (I) after one month.

Refinement

All the hydrogen atoms were located from the Fourier map and were allowed to refine freely.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Symmetry code for atoms labelled A: x, -y + 1/2, z + 1/2.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing a polymeric chain along the c axis.

Crystal data

[Cu(C2H3O3)Cl(H2O)]F000 = 380
Mr = 192.05Dx = 2.358 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6364 reflections
a = 7.6296 (2) Åθ = 2.8–41.4º
b = 10.0896 (3) ŵ = 4.45 mm1
c = 7.4603 (2) ÅT = 100.0 (1) K
β = 109.632 (1)ºBlock, blue
V = 540.91 (3) Å30.56 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2372 independent reflections
Radiation source: fine-focus sealed tube2147 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 100.0(1) Kθmax = 35.0º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −12→12
Tmin = 0.189, Tmax = 0.512k = −15→16
10874 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.058  w = 1/[σ2(Fo2) + (0.035P)2 + 0.0909P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2372 reflectionsΔρmax = 0.80 e Å3
93 parametersΔρmin = −0.66 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.709943 (18)0.143386 (14)0.84591 (2)0.01140 (5)
Cl10.55544 (4)0.22147 (3)0.48054 (4)0.01285 (6)
O10.92698 (11)0.26130 (9)0.90217 (13)0.01339 (15)
O20.87233 (11)0.01710 (9)0.78289 (13)0.01408 (15)
O31.15672 (12)−0.01023 (10)0.76906 (14)0.01787 (17)
C11.08255 (15)0.20052 (12)0.86756 (17)0.01349 (19)
C21.03389 (15)0.05935 (12)0.80059 (16)0.01302 (18)
O1W0.52646 (12)0.00559 (10)0.80898 (13)0.01492 (16)
H1A1.114 (3)0.2483 (19)0.773 (3)0.017 (4)*
H1B1.183 (3)0.2001 (19)0.981 (3)0.014 (4)*
H1W10.526 (3)−0.050 (3)0.740 (3)0.033 (6)*
H2W10.422 (3)0.026 (2)0.809 (3)0.034 (6)*
H1O10.904 (3)0.331 (2)0.849 (3)0.025 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01055 (7)0.00927 (8)0.01456 (7)−0.00050 (4)0.00446 (5)−0.00081 (4)
Cl10.01344 (10)0.01174 (12)0.01357 (10)−0.00079 (9)0.00481 (8)0.00024 (8)
O10.0120 (3)0.0100 (4)0.0183 (4)0.0004 (3)0.0053 (3)0.0003 (3)
O20.0115 (3)0.0117 (4)0.0188 (4)−0.0006 (3)0.0049 (3)−0.0012 (3)
O30.0139 (3)0.0142 (4)0.0264 (4)0.0003 (3)0.0078 (3)−0.0043 (3)
C10.0127 (4)0.0117 (5)0.0170 (4)0.0001 (4)0.0063 (4)−0.0010 (4)
C20.0119 (4)0.0122 (5)0.0143 (4)0.0003 (4)0.0034 (3)0.0009 (4)
O1W0.0141 (3)0.0129 (4)0.0193 (4)−0.0030 (3)0.0076 (3)−0.0037 (3)

Geometric parameters (Å, °)

Cu1—O1W1.9260 (9)O2—C21.2686 (13)
Cu1—O21.9419 (8)O3—C21.2548 (14)
Cu1—O11.9664 (9)C1—C21.5138 (17)
Cu1—Cl1i2.2480 (3)C1—H1A0.951 (19)
Cu1—Cl12.6983 (3)C1—H1B0.928 (19)
Cl1—Cu1ii2.2479 (3)O1W—H1W10.76 (3)
O1—C11.4344 (14)O1W—H2W10.82 (2)
O1—H1O10.80 (2)
O1W—Cu1—O289.08 (4)C2—O2—Cu1115.53 (8)
O1W—Cu1—O1170.67 (4)O1—C1—C2109.61 (9)
O2—Cu1—O183.61 (4)O1—C1—H1A110.3 (11)
O1W—Cu1—Cl1i92.11 (3)C2—C1—H1A109.0 (12)
O2—Cu1—Cl1i168.29 (3)O1—C1—H1B108.4 (11)
O1—Cu1—Cl1i93.90 (3)C2—C1—H1B109.3 (12)
O1W—Cu1—Cl190.94 (3)H1A—C1—H1B110.2 (16)
O2—Cu1—Cl192.56 (3)O3—C2—O2123.59 (11)
O1—Cu1—Cl195.15 (3)O3—C2—C1118.20 (10)
Cl1i—Cu1—Cl199.065 (9)O2—C2—C1118.20 (10)
Cu1ii—Cl1—Cu1120.780 (12)Cu1—O1W—H1W1118.1 (17)
C1—O1—Cu1113.04 (7)Cu1—O1W—H2W1118.3 (16)
C1—O1—H1O1109.9 (16)H1W1—O1W—H2W1114 (2)
Cu1—O1—H1O1113.7 (16)
O1W—Cu1—Cl1—Cu1ii−165.23 (3)O1—Cu1—O2—C2−0.62 (8)
O2—Cu1—Cl1—Cu1ii−76.11 (3)Cl1i—Cu1—O2—C2−78.90 (16)
O1—Cu1—Cl1—Cu1ii7.70 (3)Cl1—Cu1—O2—C294.27 (8)
Cl1i—Cu1—Cl1—Cu1ii102.489 (19)Cu1—O1—C1—C2−1.27 (11)
O1W—Cu1—O1—C139.6 (3)Cu1—O2—C2—O3178.65 (9)
O2—Cu1—O1—C11.08 (8)Cu1—O2—C2—C10.04 (13)
Cl1i—Cu1—O1—C1169.58 (7)O1—C1—C2—O3−177.86 (10)
Cl1—Cu1—O1—C1−90.94 (7)O1—C1—C2—O20.83 (15)
O1W—Cu1—O2—C2−174.83 (8)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl1iii0.76 (3)2.32 (3)3.0654 (10)166 (2)
O1W—H2W1···O3iv0.82 (2)1.98 (2)2.7400 (12)153 (2)
O1—H1O1···O3v0.80 (2)1.81 (2)2.6086 (13)177 (2)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2487).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dengel, A. C., Griffth, W. P., Powell, R. D. & Skapski, A. C. (1987). J. Chem. Soc. Dalton Trans. pp. 991–995.
  • Gao, S., Huo, L.-H., Zhang, Z.-Y., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1278–m1280.
  • Lanfranchi, M., Prati, L., Rossi, M. & Tiripicchio, A. (1993). J. Chem. Soc. Chem. Commun. pp. 1698–1699.
  • Medina, G., Gasque, L. & Bernès, S. (2000). Acta Cryst. C56, 766–768. [PubMed]
  • Prout, K., Mtetwa, V. S. B. & Rossotti, F. J. C. (1993). Acta Cryst. B49, 73–79.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography