PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o996.
Published online 2008 May 3. doi:  10.1107/S1600536808012117
PMCID: PMC2961556

9-Chloro­methyl-9-[(9H-fluoren-9-yl)meth­yl]-9H-fluorene

Abstract

In the title compound, C28H21Cl, the dihedral angle between the two fluorene ring systems is 71.97 (4)°. There is an intra­molecular C—H(...)Cl hydrogen bond. In the crystal structure, the centroid-to-centroid distance between stacked fluorene ring systems is ca 4.22 Å, which indicates that there are no π–π stacking inter­actions between them.

Related literature

For general background, see: Chun et al. (2003 [triangle]); Kim et al. (1998 [triangle]); Muller et al. (2003 [triangle]); Saragi et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o996-scheme1.jpg

Experimental

Crystal data

  • C28H21Cl
  • M r = 392.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o996-efi1.jpg
  • a = 8.4346 (17) Å
  • b = 26.368 (5) Å
  • c = 9.1162 (18) Å
  • β = 94.08 (3)°
  • V = 2022.3 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 298 (2) K
  • 0.35 × 0.29 × 0.22 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: none
  • 16094 measured reflections
  • 3646 independent reflections
  • 2747 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.133
  • S = 1.08
  • 3646 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012117/xu2420sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012117/xu2420Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (20674070) and the Natural Science Foundation of Zhejiang Province, China (R404109).

supplementary crystallographic information

Comment

Fluorene derivatives, have attracted much attention due to their potential utilities in organic lightemitting devices (Muller et al., 2003), organic phototransistors (Saragi et al., 2004), nonlinear optics (Kim et al., 1998) and photochromic materials (Chun et al., 2003). The title compound (hereinafter abbreviated to fmcf) is one of fluorene derivatives.

The asymmetric unit of the title compound contains one fmcf molecule (Fig. 1). The chloromethyl group is attached on the C-9 position of one fluorene ring. Two fluorene rings are linked together through a methylene carbon atom, and the dihedral angle between the two fluorene rings is 71.97 (4)°. There is intramolecular C–H···Cl hydrogen bond with distance of 3.075 (2) Å (Table 1), while the intermolecular C–H···Cl contacts are of 3.573 (2) Å, which is not viewed as C–H···Cl hydrogen bond. The centroid to centroid distance between stacked fluorene rings is ca. 4.22 Å, which is very long and prevents π···π stacking (Fig. 2). All bond lengths and angles are normal.

Experimental

All chemicals were of analytic grade quality obtained from commercial sources and used as received, unless stated otherwise. To a solution of fluorene (1.66 g, 10 mmol) in dry THF (40 ml) was added a hexane solution of n-butylithium (4 ml, 2.5 M, 10 mmol) under nitrogen at -78 °C, the mixture was stirred for 1 h. A solution of PCl3 (2 mmol) in THF (10 ml) was then added. After stirring for another 1 h, the mixture was cooling slowly to room temperature, and kept stirring overnight. To the mixture was added dichloromethane (20 ml) and stirred for 1 h. The solvent was evaporated under reduced pressure. The crude products were purified by columnchromatography (silica gel) using n-hexane/dichloromethane as eluent. The title compound was obtained as white solid in 31% yield. Colorless single crystals were grown from a CH2Cl2 solution of the compound.

Refinement

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.98 Å (methine), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of the title compound. H atoms are omitted for clarity.

Crystal data

C28H21ClF000 = 824
Mr = 392.90Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12994 reflections
a = 8.4346 (17) Åθ = 3.1–27.4º
b = 26.368 (5) ŵ = 0.20 mm1
c = 9.1162 (18) ÅT = 298 (2) K
β = 94.08 (3)ºChunk, colorless
V = 2022.3 (7) Å30.35 × 0.29 × 0.22 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Monochromator: graphiteθmax = 25.3º
T = 298(2) Kθmin = 3.1º
[var phi] and ω scansh = −10→10
Absorption correction: nonek = −31→31
16094 measured reflectionsl = −10→10
3646 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0595P)2 + 0.3188P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
3646 reflectionsΔρmin = −0.25 e Å3
263 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Secondary atom site location: difference Fourier map

Special details

Experimental. 1HNMR (500 MHz, δ in p.p.m., CDCl3): 2.90 (d, 2H, J = 5.5 Hz), 3.19 (t, 1H,J= 4.5 Hz), 3.86 (s, 2H), 6.62 (d, 2H, J = 7.0 Hz), 7.02 (t, 2H, J= 7.5 Hz), 7.19 (t, 2H, J = 7.5 Hz), 7.39 (t, 2H, J = 7.5 Hz), 7.46 (t, 2H, J = 7.5 Hz), 7.54 (d, 2H,J = 7.5 Hz), 7.67 (d, 2H, J = 7.5 Hz), 7.78 (d, 2H, J= 7.0 Hz); 13C NMR (125 MHz, δ in p.p.m., CDCl3): 40.64, 44.45, 53.35, 55.55, 119.52, 120.75, 125.06, 125.18, 126.86, 126.92, 127.66,128.74, 140.70, 141.48, 146.99, 148.22; MS (EI): calcd for C28H21Cl, 392; found: 392 (M+), 356, 191 (100), 179, 165, 152.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.14417 (6)0.73515 (2)0.46199 (7)0.0815 (2)
C10.38752 (16)0.68247 (6)0.60052 (19)0.0421 (4)
C20.30669 (16)0.65243 (5)0.72229 (18)0.0407 (4)
C30.16272 (18)0.63563 (7)0.7173 (2)0.0546 (5)
H30.09260.64020.63490.066*
C40.1160 (2)0.60914 (7)0.8475 (3)0.0671 (6)
H40.01210.59710.84340.080*
C50.2094 (2)0.59950 (7)0.9791 (3)0.0651 (5)
H50.16920.58211.05710.078*
C60.3524 (2)0.61602 (7)0.9853 (2)0.0547 (5)
H60.42160.61131.06820.066*
C70.40065 (17)0.64228 (5)0.85735 (18)0.0410 (4)
C80.54497 (17)0.66472 (6)0.83543 (19)0.0427 (4)
C90.6747 (2)0.66400 (7)0.9329 (2)0.0581 (5)
H90.67870.64721.02280.070*
C100.7950 (2)0.69009 (8)0.8846 (3)0.0731 (7)
H100.88990.69130.94300.088*
C110.7859 (2)0.71698 (9)0.7450 (3)0.0778 (7)
H110.87490.73530.72150.093*
C120.6578 (2)0.71744 (7)0.6465 (3)0.0635 (5)
H120.65450.73490.55760.076*
C130.53712 (17)0.69020 (6)0.6907 (2)0.0455 (4)
C140.47723 (18)0.60085 (6)0.46017 (19)0.0461 (4)
H140.50530.59430.56460.055*
C150.38570 (18)0.55633 (6)0.39464 (19)0.0460 (4)
C160.2451 (2)0.54170 (7)0.4245 (2)0.0573 (5)
H160.18670.55920.49090.069*
C170.1854 (2)0.49837 (7)0.3523 (2)0.0637 (5)
H170.08480.48740.37370.076*
C180.2642 (2)0.47010 (7)0.2507 (3)0.0659 (5)
H180.21670.44160.20630.079*
C190.4057 (2)0.48432 (7)0.2191 (2)0.0593 (5)
H190.46280.46680.15160.071*
C200.46626 (18)0.52716 (6)0.29204 (19)0.0473 (4)
C210.61091 (18)0.55048 (7)0.28235 (19)0.0497 (4)
C220.7292 (2)0.53544 (8)0.1985 (2)0.0626 (5)
H220.72110.50700.13830.075*
C230.8541 (2)0.56413 (10)0.2096 (3)0.0737 (6)
H230.93980.55610.15520.088*
C240.8643 (2)0.60722 (9)0.3016 (3)0.0766 (6)
H240.95730.62620.30440.092*
C250.7467 (2)0.62294 (9)0.3868 (2)0.0666 (6)
H250.75610.65150.44660.080*
C260.61912 (18)0.59411 (7)0.37704 (19)0.0501 (4)
C270.40233 (18)0.65354 (6)0.44306 (19)0.0472 (4)
H27A0.29720.65030.39340.057*
H27B0.46610.67410.38160.057*
C280.3207 (2)0.73528 (7)0.5688 (2)0.0576 (5)
H28A0.39830.75490.51930.069*
H28B0.30450.75200.66130.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0610 (3)0.0870 (4)0.0956 (5)0.0332 (3)−0.0002 (3)0.0213 (3)
C10.0348 (7)0.0412 (8)0.0506 (10)0.0036 (6)0.0054 (7)0.0058 (7)
C20.0311 (7)0.0375 (8)0.0540 (10)0.0019 (6)0.0063 (7)−0.0014 (7)
C30.0342 (8)0.0576 (10)0.0720 (13)−0.0010 (7)0.0043 (8)−0.0049 (9)
C40.0415 (9)0.0611 (11)0.1018 (17)−0.0098 (8)0.0271 (10)−0.0070 (11)
C50.0605 (11)0.0605 (11)0.0774 (15)−0.0026 (9)0.0271 (10)0.0139 (10)
C60.0519 (10)0.0536 (10)0.0593 (12)0.0054 (8)0.0092 (8)0.0090 (9)
C70.0390 (8)0.0344 (7)0.0503 (10)0.0048 (6)0.0075 (7)0.0000 (7)
C80.0333 (7)0.0382 (8)0.0563 (11)0.0045 (6)0.0020 (7)−0.0065 (7)
C90.0454 (9)0.0554 (10)0.0720 (13)0.0096 (8)−0.0072 (9)−0.0139 (9)
C100.0352 (9)0.0727 (13)0.1100 (19)0.0001 (9)−0.0045 (10)−0.0327 (13)
C110.0392 (9)0.0748 (13)0.121 (2)−0.0183 (9)0.0167 (11)−0.0319 (14)
C120.0499 (10)0.0556 (10)0.0871 (15)−0.0133 (8)0.0188 (10)−0.0032 (10)
C130.0351 (7)0.0404 (8)0.0616 (11)−0.0011 (6)0.0087 (7)−0.0031 (8)
C140.0401 (8)0.0526 (9)0.0453 (10)0.0095 (7)0.0015 (7)0.0017 (7)
C150.0412 (8)0.0476 (9)0.0488 (10)0.0104 (7)0.0018 (7)0.0071 (7)
C160.0467 (9)0.0584 (10)0.0678 (13)0.0059 (8)0.0118 (8)0.0026 (9)
C170.0487 (10)0.0574 (11)0.0854 (15)−0.0004 (8)0.0075 (10)0.0087 (11)
C180.0600 (11)0.0501 (10)0.0869 (15)0.0005 (9)0.0005 (10)−0.0018 (10)
C190.0562 (10)0.0511 (10)0.0705 (13)0.0136 (8)0.0047 (9)−0.0029 (9)
C200.0426 (8)0.0471 (9)0.0519 (11)0.0125 (7)0.0002 (7)0.0067 (8)
C210.0418 (8)0.0574 (10)0.0496 (10)0.0171 (7)0.0013 (7)0.0059 (8)
C220.0470 (10)0.0744 (12)0.0663 (13)0.0196 (9)0.0045 (9)−0.0018 (10)
C230.0406 (10)0.1029 (17)0.0786 (15)0.0206 (10)0.0110 (9)0.0027 (13)
C240.0348 (9)0.1053 (17)0.0897 (17)0.0044 (10)0.0036 (10)−0.0003 (14)
C250.0412 (9)0.0843 (14)0.0737 (14)0.0025 (9)−0.0006 (9)−0.0097 (11)
C260.0349 (8)0.0629 (10)0.0515 (11)0.0120 (7)−0.0029 (7)0.0022 (8)
C270.0383 (8)0.0532 (9)0.0499 (10)0.0097 (7)0.0024 (7)0.0078 (8)
C280.0527 (10)0.0496 (10)0.0714 (13)0.0093 (8)0.0104 (9)0.0101 (9)

Geometric parameters (Å, °)

Cl1—C281.720 (2)C14—C271.530 (2)
C1—C131.470 (2)C14—H140.9800
C1—C281.522 (2)C15—C161.294 (2)
C1—C21.560 (2)C15—C201.421 (2)
C1—C271.638 (2)C16—C171.395 (3)
C2—C31.290 (2)C16—H160.9300
C2—C71.441 (2)C17—C181.394 (3)
C3—C41.455 (3)C17—H170.9300
C3—H30.9300C18—C191.302 (3)
C4—C51.411 (3)C18—H180.9300
C4—H40.9300C19—C201.390 (3)
C5—C61.280 (3)C19—H190.9300
C5—H50.9300C20—C211.375 (2)
C6—C71.440 (2)C21—C221.358 (2)
C6—H60.9300C21—C261.437 (3)
C7—C81.381 (2)C22—C231.295 (3)
C8—C91.360 (2)C22—H220.9300
C8—C131.478 (2)C23—C241.411 (3)
C9—C101.326 (3)C23—H230.9300
C9—H90.9300C24—C251.367 (3)
C10—C111.454 (4)C24—H240.9300
C10—H100.9300C25—C261.315 (3)
C11—C121.355 (3)C25—H250.9300
C11—H110.9300C27—H27A0.9700
C12—C131.331 (2)C27—H27B0.9700
C12—H120.9300C28—H28A0.9700
C14—C261.472 (2)C28—H28B0.9700
C14—C151.505 (2)
C13—C1—C28105.72 (13)C16—C15—C20117.73 (17)
C13—C1—C294.22 (12)C16—C15—C14126.93 (17)
C28—C1—C2115.17 (13)C20—C15—C14115.32 (14)
C13—C1—C27116.01 (12)C15—C16—C17116.78 (18)
C28—C1—C27108.04 (14)C15—C16—H16121.6
C2—C1—C27116.85 (12)C17—C16—H16121.6
C3—C2—C7115.17 (16)C18—C17—C16125.34 (18)
C3—C2—C1127.39 (16)C18—C17—H17117.3
C7—C2—C1117.44 (13)C16—C17—H17117.3
C2—C3—C4116.40 (17)C19—C18—C17118.73 (19)
C2—C3—H3121.8C19—C18—H18120.6
C4—C3—H3121.8C17—C18—H18120.6
C5—C4—C3127.81 (16)C18—C19—C20116.08 (18)
C5—C4—H4116.1C18—C19—H19122.0
C3—C4—H4116.1C20—C19—H19122.0
C6—C5—C4116.31 (19)C21—C20—C19129.09 (16)
C6—C5—H5121.8C21—C20—C15105.57 (15)
C4—C5—H5121.8C19—C20—C15125.33 (16)
C5—C6—C7116.61 (19)C22—C21—C20126.61 (18)
C5—C6—H6121.7C22—C21—C26124.45 (17)
C7—C6—H6121.7C20—C21—C26108.94 (15)
C8—C7—C6128.77 (16)C23—C22—C21114.3 (2)
C8—C7—C2103.51 (14)C23—C22—H22122.8
C6—C7—C2127.70 (15)C21—C22—H22122.8
C9—C8—C7125.19 (17)C22—C23—C24122.10 (19)
C9—C8—C13124.93 (16)C22—C23—H23118.9
C7—C8—C13109.88 (14)C24—C23—H23118.9
C10—C9—C8112.0 (2)C25—C24—C23124.5 (2)
C10—C9—H9124.0C25—C24—H24117.8
C8—C9—H9124.0C23—C24—H24117.8
C9—C10—C11123.34 (18)C26—C25—C24114.1 (2)
C9—C10—H10118.3C26—C25—H25122.9
C11—C10—H10118.3C24—C25—H25122.9
C12—C11—C10125.04 (19)C25—C26—C21120.52 (17)
C12—C11—H11117.5C25—C26—C14125.89 (18)
C10—C11—H11117.5C21—C26—C14113.56 (15)
C13—C12—C11112.7 (2)C14—C27—C1112.98 (13)
C13—C12—H12123.7C14—C27—H27A109.0
C11—C12—H12123.7C1—C27—H27A109.0
C12—C13—C1123.32 (17)C14—C27—H27B109.0
C12—C13—C8121.94 (17)C1—C27—H27B109.0
C1—C13—C8114.73 (13)H27A—C27—H27B107.8
C26—C14—C1596.56 (14)C1—C28—Cl1113.56 (13)
C26—C14—C27113.72 (15)C1—C28—H28A108.9
C15—C14—C27118.13 (13)Cl1—C28—H28A108.9
C26—C14—H14109.2C1—C28—H28B108.9
C15—C14—H14109.2Cl1—C28—H28B108.9
C27—C14—H14109.2H28A—C28—H28B107.7
C13—C1—C2—C3176.17 (17)C26—C14—C15—C201.81 (17)
C28—C1—C2—C366.6 (2)C27—C14—C15—C20123.19 (16)
C27—C1—C2—C3−61.8 (2)C20—C15—C16—C17−0.1 (3)
C13—C1—C2—C7−3.14 (16)C14—C15—C16—C17−178.46 (16)
C28—C1—C2—C7−112.70 (16)C15—C16—C17—C18−0.5 (3)
C27—C1—C2—C7118.88 (14)C16—C17—C18—C190.4 (3)
C7—C2—C3—C40.1 (2)C17—C18—C19—C200.4 (3)
C1—C2—C3—C4−179.23 (15)C18—C19—C20—C21179.31 (19)
C2—C3—C4—C5−0.1 (3)C18—C19—C20—C15−1.0 (3)
C3—C4—C5—C60.1 (3)C16—C15—C20—C21−179.38 (16)
C4—C5—C6—C7−0.1 (3)C14—C15—C20—C21−0.83 (19)
C5—C6—C7—C8178.42 (17)C16—C15—C20—C190.9 (3)
C5—C6—C7—C20.2 (3)C14—C15—C20—C19179.43 (16)
C3—C2—C7—C8−178.76 (14)C19—C20—C21—C22−1.2 (3)
C1—C2—C7—C80.64 (17)C15—C20—C21—C22179.06 (17)
C3—C2—C7—C6−0.2 (2)C19—C20—C21—C26179.09 (17)
C1—C2—C7—C6179.23 (15)C15—C20—C21—C26−0.64 (18)
C6—C7—C8—C93.1 (3)C20—C21—C22—C23−179.87 (19)
C2—C7—C8—C9−178.30 (15)C26—C21—C22—C23−0.2 (3)
C6—C7—C8—C13−176.25 (15)C21—C22—C23—C240.0 (3)
C2—C7—C8—C132.33 (16)C22—C23—C24—C250.1 (4)
C7—C8—C9—C10−177.88 (16)C23—C24—C25—C260.1 (3)
C13—C8—C9—C101.4 (2)C24—C25—C26—C21−0.3 (3)
C8—C9—C10—C111.2 (3)C24—C25—C26—C14177.61 (17)
C9—C10—C11—C12−2.2 (3)C22—C21—C26—C250.4 (3)
C10—C11—C12—C130.1 (3)C20—C21—C26—C25−179.91 (18)
C11—C12—C13—C1−176.77 (16)C22—C21—C26—C14−177.76 (16)
C11—C12—C13—C82.5 (3)C20—C21—C26—C142.0 (2)
C28—C1—C13—C12−58.6 (2)C15—C14—C26—C25179.82 (19)
C2—C1—C13—C12−176.21 (16)C27—C14—C26—C2555.1 (3)
C27—C1—C13—C1261.1 (2)C15—C14—C26—C21−2.17 (17)
C28—C1—C13—C8122.11 (15)C27—C14—C26—C21−126.84 (16)
C2—C1—C13—C84.48 (15)C26—C14—C27—C1−123.54 (15)
C27—C1—C13—C8−118.20 (15)C15—C14—C27—C1124.34 (16)
C9—C8—C13—C12−3.6 (3)C13—C1—C27—C1458.35 (18)
C7—C8—C13—C12175.79 (16)C28—C1—C27—C14176.78 (13)
C9—C8—C13—C1175.74 (15)C2—C1—C27—C14−51.45 (17)
C7—C8—C13—C1−4.88 (18)C13—C1—C28—Cl1179.50 (12)
C26—C14—C15—C16−179.80 (18)C2—C1—C28—Cl1−77.98 (18)
C27—C14—C15—C16−58.4 (2)C27—C1—C28—Cl154.69 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C27—H27A···Cl10.972.683.075 (2)105
C10—H10···Cl1i0.932.893.573 (2)131

Symmetry codes: (i) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2420).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem.13, 2904–2909.
  • Kim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys.109, 2593–2595.
  • Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829–833. [PubMed]
  • Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett.84, 2334–2336.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography