PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1100.
Published online 2008 May 17. doi:  10.1107/S1600536808014414
PMCID: PMC2961555

Bis(4-pyridylmeth­yl) hexa­nedioate

Abstract

The asymmetric unit of the title compound, C18H20N2O4, contains one half-mol­ecule. The mol­ecule lies on an inversion centre and is roughly planar, the chains between the two pyridine rings being only slightly twisted, with torsion angles ranging from 170.9 (1) to 177.2 (1)°. Weak C—H(...)O hydrogen bonds result in the formation of a three-dimensional network.

Related literature

For related literature, see: Banfi et al. (2002 [triangle]); Magden & Basel (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1100-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O4
  • M r = 328.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1100-efi1.jpg
  • a = 9.1489 (18) Å
  • b = 10.164 (2) Å
  • c = 8.9206 (18) Å
  • β = 102.11 (3)°
  • V = 811.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 113 (2) K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.979, T max = 0.988
  • 9823 measured reflections
  • 1918 independent reflections
  • 1288 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.106
  • S = 0.98
  • 1918 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014414/dn2349sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014414/dn2349Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hexanedioic acid dipyridin-4-ylmethyl ester is a very important intermediate in the synthesis of cephalosporins (Magden & Basel, 1984). Also, it can be used as a ligand designed for the self-assembly of coordination frameworks and architectures (Banfi et al., 2002);

The title compound is arranged around an inversion centre located in the middle of the C9-C9i bond [symmetry code:(i) 1-x, 1-y, 1-z ] (Fig. 1). The molecule is roughly planar, the chains between the two pyridyl rings being only slightly twisted with torsion angles ranging from 170.9 (1) to 177.2 (1)° .

Weak intermolecular C—H···O hydrogen bonds (Table 1) result in the formation of a three dimensionnal network

Experimental

4-pyridinemethanol (9.82 g, 0.09 mol) and dimethyl adipate (5.22 g, 0.03 mol) were stirred with 200 ml n-octane at 343 k,then titaniun tetraisopropoxide (0.2 g) was added.The mixture was heated to 399 k, the methanol was distilled off. After stirring at this temperature for 4 h,the reaction finished. The solvent was evaporated under reduced pressure. The product was purified by chromatography on silica. Crystals of hexanedioic acid dipyridin-4-ylmethyl ester were obtained by slow evaporation of a solution of ethyl acetation at room temperature(m.p. 359 k).

Refinement

H atoms were positioned geometrically and refined as riding on their parent atoms [C—H distances are 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2 Ueq(C)].

Figures

Fig. 1.
A view of the molecular structure of (I)with the atoms labelling scheme. Displacement ellopsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1-x, 1-y, 1-z ]

Crystal data

C18H20N2O4F000 = 348
Mr = 328.36Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2434 reflections
a = 9.1489 (18) Åθ = 2.3–27.9º
b = 10.164 (2) ŵ = 0.10 mm1
c = 8.9206 (18) ÅT = 113 (2) K
β = 102.11 (3)ºBlock, colorless
V = 811.1 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2

Data collection

Rigaku Saturn diffractometer1918 independent reflections
Radiation source: rotating anode1288 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.060
T = 113(2) Kθmax = 27.9º
ω scansθmin = 2.3º
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)h = −12→12
Tmin = 0.979, Tmax = 0.988k = −13→13
9823 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0564P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1918 reflectionsΔρmax = 0.34 e Å3
109 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70599 (9)0.51214 (8)0.11415 (9)0.0198 (2)
O20.64123 (11)0.69241 (9)0.22847 (10)0.0307 (3)
N10.90646 (13)0.38939 (10)−0.35175 (12)0.0234 (3)
C10.89598 (14)0.58417 (13)−0.20251 (14)0.0219 (3)
H10.92180.6722−0.18540.026*
C20.93751 (15)0.51700 (13)−0.32073 (15)0.0226 (3)
H20.99010.5625−0.38280.027*
C30.83041 (15)0.32799 (13)−0.25920 (15)0.0250 (3)
H30.80820.2394−0.27730.030*
C40.78264 (14)0.38780 (13)−0.13832 (14)0.0221 (3)
H40.72970.3404−0.07810.026*
C50.81535 (14)0.51996 (12)−0.10895 (13)0.0184 (3)
C60.76640 (15)0.59800 (12)0.01395 (14)0.0206 (3)
H6A0.85090.64600.07270.025*
H6B0.69100.6614−0.03230.025*
C70.64740 (13)0.57452 (13)0.22139 (13)0.0188 (3)
C80.59372 (14)0.47965 (12)0.32611 (14)0.0200 (3)
H8A0.67510.42120.37070.024*
H8B0.51410.42640.26690.024*
C90.53658 (14)0.54786 (11)0.45402 (14)0.0196 (3)
H9A0.61930.59120.52190.023*
H9B0.46470.61480.41020.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0269 (5)0.0179 (5)0.0184 (5)0.0006 (4)0.0133 (4)0.0013 (4)
O20.0492 (7)0.0193 (5)0.0301 (6)−0.0007 (4)0.0230 (5)−0.0018 (4)
N10.0283 (6)0.0223 (6)0.0218 (6)0.0034 (5)0.0102 (5)−0.0005 (5)
C10.0242 (7)0.0193 (7)0.0236 (7)0.0012 (5)0.0081 (6)0.0020 (6)
C20.0244 (7)0.0263 (7)0.0197 (7)0.0016 (6)0.0106 (6)0.0040 (6)
C30.0288 (8)0.0211 (7)0.0263 (8)−0.0004 (6)0.0089 (6)−0.0040 (6)
C40.0235 (7)0.0249 (7)0.0199 (7)−0.0010 (5)0.0093 (6)0.0018 (6)
C50.0189 (6)0.0216 (7)0.0145 (6)0.0016 (5)0.0033 (5)0.0012 (5)
C60.0283 (7)0.0175 (7)0.0191 (7)−0.0018 (5)0.0122 (6)0.0023 (5)
C70.0199 (7)0.0208 (7)0.0168 (7)0.0002 (5)0.0062 (5)−0.0028 (6)
C80.0240 (7)0.0183 (6)0.0202 (7)−0.0005 (5)0.0106 (5)0.0010 (5)
C90.0220 (7)0.0204 (7)0.0187 (7)−0.0001 (5)0.0098 (6)0.0005 (6)

Geometric parameters (Å, °)

O1—C71.3489 (14)C4—H40.9300
O1—C61.4398 (14)C5—C61.4959 (17)
O2—C71.2019 (15)C6—H6A0.9700
N1—C31.3402 (16)C6—H6B0.9700
N1—C21.3441 (16)C7—C81.4954 (17)
C1—C21.3751 (17)C8—C91.5186 (17)
C1—C51.3874 (16)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—H20.9300C9—C9i1.516 (2)
C3—C41.3860 (17)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.3891 (18)
C7—O1—C6114.63 (10)C5—C6—H6A109.6
C3—N1—C2115.92 (11)O1—C6—H6B109.6
C2—C1—C5119.68 (12)C5—C6—H6B109.6
C2—C1—H1120.2H6A—C6—H6B108.1
C5—C1—H1120.2O2—C7—O1122.40 (11)
N1—C2—C1123.82 (12)O2—C7—C8125.79 (11)
N1—C2—H2118.1O1—C7—C8111.80 (11)
C1—C2—H2118.1C7—C8—C9112.64 (10)
N1—C3—C4124.35 (12)C7—C8—H8A109.1
N1—C3—H3117.8C9—C8—H8A109.1
C4—C3—H3117.8C7—C8—H8B109.1
C3—C4—C5118.70 (11)C9—C8—H8B109.1
C3—C4—H4120.6H8A—C8—H8B107.8
C5—C4—H4120.6C9i—C9—C8111.98 (12)
C1—C5—C4117.52 (11)C9i—C9—H9A109.2
C1—C5—C6118.04 (11)C8—C9—H9A109.2
C4—C5—C6124.42 (11)C9i—C9—H9B109.2
O1—C6—C5110.27 (10)C8—C9—H9B109.2
O1—C6—H6A109.6H9A—C9—H9B107.9
C1—C5—C6—O1−170.85 (11)O1—C7—C8—C9176.27 (10)
C6—O1—C7—C8−177.17 (10)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6B···O2ii0.972.563.3333 (17)137

Symmetry codes: (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2349).

References

  • Banfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. (2002). J. Chem. Soc. Dalton Trans. pp. 2714–2721.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Magden, A. & Basel, E. (1984). United States Patent US 4 461 898.
  • Rigaku (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography