PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1084.
Published online 2008 May 17. doi:  10.1107/S1600536808014177
PMCID: PMC2961554

Ethyl 5-acetyl-2-amino-4-methyl­thio­phene-3-carboxyl­ate

Abstract

In the title compound, C10H13NO3S, prepared in a one-pot reaction, the mol­ecular conformation is stabilized by an intra­molecular N—H(...)O hydrogen bond. The packing is consolidated by further N—H(...)O links. The H atoms of two of the methyl groups are disordered over two sets of sites with equal occupancies.

Related literature

For related literature, see: Gewald et al. (1966 [triangle]); Sabnis et al. (1999 [triangle]); Akkurt et al. (2008 [triangle]); Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1084-scheme1.jpg

Experimental

Crystal data

  • C10H13NO3S
  • M r = 227.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1084-efi1.jpg
  • a = 7.5397 (3) Å
  • b = 8.4514 (3) Å
  • c = 16.7058 (6) Å
  • β = 94.465 (1)°
  • V = 1061.28 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 150 (2) K
  • 0.29 × 0.26 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.920, T max = 0.971
  • 12338 measured reflections
  • 3400 independent reflections
  • 2944 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.05
  • 3400 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014177/hb2733sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014177/hb2733Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2-Aminothiophene derivatives are important intermediates in the synthesis of a variety of agrochemicals, dyes and pharmacologically active compounds (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966), which involves the multicomponent condensation of a ketone with an activated nitrile and elemental sulfur in the presence of diethylamine as a catalyst.

As a part of an ongoing investigation into the development of anil derivatives, we here report the structure of the title compound, (I).

All bond lengths and angles in (I) (Fig. 1) are within their normal ranges (Akkurt et al., 2008; Allen et al., 1987). The thiophene ring is almost planar, with a maximum deviation of -0.009 (1) Å for C6. The structure is stabilized by weak intra molecular C—H···O and N—H···O, and intermolecular N—H···O hydrogen bonding interactions (Table 1 and Fig. 2).

Experimental

A mixture of ethyl cyanoacetate (11.3 g, 0.10 mol) and acetyl acetone (10.22 g, 0.10 mol) in absolute ethanol (20 ml) was added to a solution of elemental sulfur (3.2 g, 0.10 mol) and diethylamine (5 ml) in 50 ml absolute ethanol at room temperature. The reaction mixture was refluxed for 3 h and then cooled. The precipitated product was filtered, washed with ethanol, dried and recrystallized from ethanol as orange blocks of (I) [yield: 52%, m.p. 435-437 K]. IR (cm-1) 3408, 3294 (NH), 1666 (CO), 1605, 1586,1253. 1H-NMR (CDCl3): 1.38 (t, 3H, CH3CH2O),2.43 (s, 3H, COCH3), 2.7 (s, 3H, CH3), 4.32 (q, 2H, OCH2),6.67 (broad s, 2H, NH2).

Refinement

All the H atoms were positioned geometrically (C—H = 0.96 - 0.97 Å and N—H = 0.86 Å) and refined as riding with Uiso = 1.2Ueq(carrier) (1.5Ueq for methyl C). The methyl H atoms attached to C1 and C5 were refined as disordered over two sets of sites.

Figures

Fig. 1.
View of the molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 50% probability level. The hydrogen bond is shown as a dashed line.
Fig. 2.
View of the packing and hydrogen bonding in (I).

Crystal data

C10H13NO3SF(000) = 480
Mr = 227.28Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4913 reflections
a = 7.5397 (3) Åθ = 2.5–31.1°
b = 8.4514 (3) ŵ = 0.29 mm1
c = 16.7058 (6) ÅT = 150 K
β = 94.465 (1)°Block, orange
V = 1061.28 (7) Å30.29 × 0.26 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3400 independent reflections
Radiation source: sealed tube2944 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 31.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −11→10
Tmin = 0.920, Tmax = 0.971k = −12→12
12338 measured reflectionsl = −23→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.06P)2 + 0.3751P] where P = (Fo2 + 2Fc2)/3
3400 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.74240 (4)0.44716 (4)0.82882 (2)0.0234 (1)
O10.58575 (14)0.74136 (13)0.79734 (6)0.0324 (3)
O20.94110 (15)0.13922 (12)1.03979 (6)0.0315 (3)
O30.83808 (13)0.32842 (11)1.11776 (5)0.0251 (3)
N10.88307 (16)0.17090 (13)0.87660 (6)0.0263 (3)
C10.5682 (2)0.86338 (17)0.92406 (8)0.0307 (4)
C20.61541 (17)0.72854 (15)0.87090 (7)0.0240 (3)
C30.69568 (16)0.58332 (15)0.90307 (7)0.0210 (3)
C40.74019 (15)0.52653 (14)0.97964 (7)0.0191 (3)
C50.71928 (18)0.61996 (15)1.05495 (7)0.0249 (3)
C60.81050 (15)0.36847 (14)0.97838 (7)0.0194 (3)
C70.82188 (16)0.31123 (14)0.89967 (7)0.0208 (3)
C80.87045 (16)0.26784 (14)1.04635 (7)0.0207 (3)
C90.90152 (19)0.23865 (16)1.18821 (7)0.0272 (3)
C100.8610 (2)0.33700 (19)1.25956 (8)0.0325 (4)
HN1A0.921900.102900.912000.0320*
H1A0.517300.948000.891600.0460*0.500
H1B0.673600.900400.954300.0460*0.500
H1C0.483700.827800.960200.0460*0.500
H1D0.599100.836100.979200.0460*0.500
H1E0.442800.883800.916400.0460*0.500
H1F0.632600.956300.910500.0460*0.500
HN1B0.883500.148900.826400.0320*
H5A0.758000.557101.100900.0370*0.500
H5B0.596500.648001.057700.0370*0.500
H5C0.789900.714401.054300.0370*0.500
H5D0.671600.722501.041000.0370*0.500
H5E0.833200.631701.084300.0370*0.500
H5F0.639700.565301.087600.0370*0.500
H9A1.028500.219901.188300.0330*
H9B0.841200.137401.189200.0330*
H10A0.900500.282201.308000.0490*
H10B0.735100.354901.258500.0490*
H10C0.921500.436701.257700.0490*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0306 (2)0.0254 (2)0.0142 (1)−0.0032 (1)0.0017 (1)−0.0009 (1)
O10.0409 (6)0.0366 (5)0.0198 (4)0.0027 (4)0.0031 (4)0.0076 (4)
O20.0468 (6)0.0238 (4)0.0241 (5)0.0083 (4)0.0037 (4)−0.0003 (3)
O30.0348 (5)0.0258 (4)0.0147 (4)0.0055 (4)0.0015 (3)0.0012 (3)
N10.0373 (6)0.0222 (5)0.0197 (5)−0.0009 (4)0.0038 (4)−0.0052 (4)
C10.0386 (7)0.0263 (6)0.0271 (6)0.0064 (5)0.0016 (5)0.0038 (5)
C20.0248 (5)0.0262 (6)0.0212 (5)−0.0031 (4)0.0027 (4)0.0040 (4)
C30.0245 (5)0.0224 (5)0.0163 (5)−0.0032 (4)0.0023 (4)−0.0006 (4)
C40.0200 (5)0.0211 (5)0.0164 (5)−0.0030 (4)0.0022 (4)−0.0010 (4)
C50.0327 (6)0.0246 (6)0.0174 (5)0.0024 (5)0.0017 (4)−0.0026 (4)
C60.0216 (5)0.0206 (5)0.0161 (5)−0.0026 (4)0.0018 (4)−0.0013 (4)
C70.0228 (5)0.0217 (5)0.0180 (5)−0.0045 (4)0.0024 (4)−0.0017 (4)
C80.0234 (5)0.0215 (5)0.0173 (5)−0.0025 (4)0.0019 (4)−0.0008 (4)
C90.0360 (7)0.0270 (6)0.0185 (5)0.0027 (5)0.0010 (5)0.0057 (4)
C100.0407 (7)0.0392 (7)0.0179 (5)0.0024 (6)0.0044 (5)0.0023 (5)

Geometric parameters (Å, °)

S1—C31.7479 (13)C1—H1A0.9600
S1—C71.7232 (12)C1—H1B0.9600
O1—C21.2366 (15)C1—H1C0.9600
O2—C81.2192 (16)C1—H1D0.9600
O3—C81.3380 (15)C1—H1E0.9600
O3—C91.4498 (15)C1—H1F0.9600
N1—C71.3400 (16)C5—H5A0.9600
N1—HN1A0.8600C5—H5B0.9600
N1—HN1B0.8600C5—H5C0.9600
C1—C21.5044 (19)C5—H5D0.9600
C2—C31.4529 (18)C5—H5E0.9600
C3—C41.3829 (17)C5—H5F0.9600
C4—C61.4379 (17)C9—H9A0.9700
C4—C51.5040 (17)C9—H9B0.9700
C6—C71.4100 (17)C10—H10A0.9600
C6—C81.4619 (17)C10—H10B0.9600
C9—C101.5039 (19)C10—H10C0.9600
C3—S1—C791.72 (6)H1C—C1—H1D56.00
C8—O3—C9116.87 (10)H1C—C1—H1E56.00
HN1A—N1—HN1B120.00H1C—C1—H1F141.00
C7—N1—HN1A120.00H1D—C1—H1E110.00
C7—N1—HN1B120.00H1D—C1—H1F109.00
O1—C2—C1119.18 (12)H1E—C1—H1F109.00
O1—C2—C3118.66 (11)C4—C5—H5A109.00
C1—C2—C3122.17 (11)C4—C5—H5B110.00
S1—C3—C2113.26 (9)C4—C5—H5C109.00
C2—C3—C4134.38 (11)C4—C5—H5D109.00
S1—C3—C4112.34 (9)C4—C5—H5E109.00
C5—C4—C6124.25 (10)C4—C5—H5F109.00
C3—C4—C6111.84 (10)H5A—C5—H5B109.00
C3—C4—C5123.91 (11)H5A—C5—H5C110.00
C4—C6—C7112.44 (10)H5A—C5—H5D141.00
C4—C6—C8128.40 (11)H5A—C5—H5E56.00
C7—C6—C8119.16 (10)H5A—C5—H5F56.00
N1—C7—C6128.26 (11)H5B—C5—H5C109.00
S1—C7—N1120.11 (9)H5B—C5—H5D56.00
S1—C7—C6111.64 (9)H5B—C5—H5E141.00
O2—C8—O3122.18 (11)H5B—C5—H5F56.00
O2—C8—C6124.04 (11)H5C—C5—H5D56.00
O3—C8—C6113.77 (10)H5C—C5—H5E56.00
O3—C9—C10106.24 (11)H5C—C5—H5F141.00
C2—C1—H1A109.00H5D—C5—H5E109.00
C2—C1—H1B109.00H5D—C5—H5F109.00
C2—C1—H1C109.00H5E—C5—H5F109.00
C2—C1—H1D109.00O3—C9—H9A110.00
C2—C1—H1E109.00O3—C9—H9B110.00
C2—C1—H1F109.00C10—C9—H9A111.00
H1A—C1—H1B109.00C10—C9—H9B110.00
H1A—C1—H1C109.00H9A—C9—H9B109.00
H1A—C1—H1D141.00C9—C10—H10A109.00
H1A—C1—H1E56.00C9—C10—H10B110.00
H1A—C1—H1F56.00C9—C10—H10C109.00
H1B—C1—H1C110.00H10A—C10—H10B109.00
H1B—C1—H1D56.00H10A—C10—H10C110.00
H1B—C1—H1E141.00H10B—C10—H10C109.00
H1B—C1—H1F56.00
C7—S1—C3—C2−178.44 (10)C2—C3—C4—C6177.16 (13)
C7—S1—C3—C40.21 (10)C3—C4—C6—C71.69 (15)
C3—S1—C7—N1−179.68 (11)C3—C4—C6—C8−179.30 (12)
C3—S1—C7—C60.76 (10)C5—C4—C6—C7−177.67 (11)
C9—O3—C8—O23.93 (18)C5—C4—C6—C81.35 (19)
C9—O3—C8—C6−177.14 (10)C4—C6—C7—S1−1.52 (13)
C8—O3—C9—C10175.85 (11)C4—C6—C7—N1178.96 (12)
O1—C2—C3—S11.18 (16)C8—C6—C7—S1179.36 (9)
O1—C2—C3—C4−177.07 (13)C8—C6—C7—N1−0.2 (2)
C1—C2—C3—S1−178.56 (10)C4—C6—C8—O2−174.17 (12)
C1—C2—C3—C43.2 (2)C4—C6—C8—O36.93 (18)
S1—C3—C4—C5178.25 (10)C7—C6—C8—O24.79 (19)
S1—C3—C4—C6−1.10 (13)C7—C6—C8—O3−174.12 (11)
C2—C3—C4—C5−3.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—HN1A···O20.862.152.7404 (14)125
N1—HN1A···O2i0.862.403.2077 (15)156
N1—HN1B···O1ii0.862.242.9933 (14)147
C5—H5A···O30.962.042.7978 (16)135

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2733).

References

  • Akkurt, M., Yalçın, Ş. P., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o923. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber.99, 94–100.
  • Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem.36, 333–345.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography