PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o966.
Published online 2008 May 3. doi:  10.1107/S1600536808008192
PMCID: PMC2961551

Methyl 4-(trimethyl­silylethyn­yl)benzoate

Abstract

The title compound, C13H16O2Si, was synthesized as a precursor for ethynylarene derivatives and crystallized from hexane. In the crystal structure, mol­ecules are linked by weak C—H(...)O hydrogen bonds to form chains that pack in layers in a herringbone fashion.

Related literature

For related literature, see: Eddaoudi et al. (2001 [triangle]); Dybtsev et al. (2004 [triangle]); Kesanli et al. (2005 [triangle]); Zhao et al. (2004 [triangle]); Allen et al. (1987 [triangle]); Fasina et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o966-scheme1.jpg

Experimental

Crystal data

  • C13H16O2Si
  • M r = 232.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o966-efi1.jpg
  • a = 6.1983 (11) Å
  • b = 7.1194 (12) Å
  • c = 29.530 (5) Å
  • V = 1303.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 100 (2) K
  • 0.25 × 0.24 × 0.08 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.960, T max = 0.987
  • 8160 measured reflections
  • 3050 independent reflections
  • 2643 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.114
  • S = 1.10
  • 3050 reflections
  • 149 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1136 Friedel pairs
  • Flack parameter: −0.01 (19)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]; Atwood & Barbour, 2003 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808008192/ez2120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008192/ez2120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge SASOL for funding.

supplementary crystallographic information

Comment

The title compound was isolated as a precursor in the synthesis of a series of ethynylarene-based ligands with terminal carboxylate groups. Interest in these kinds of ligands can be attributed to their ability to incorporate metal ions into M—O—C clusters, leading to novel metal-organic frameworks (MOFs), a category of compounds gaining increasing interest due to their potential applications for gas storage and separation and catalysis (Eddaoudi et al., 2001; Dybtsev et al., 2004; Kesanli et al., 2005; Zhao et al., 2004). The structure of the title compound (I) is shown in Fig. 1. Molecules of (I) pack in layers parallel to the (010) plane forming herring-bone motifs (Fig. 2). Analysis of the crystal packing shows that the molecules are arranged in alternating directions in the layer, due to the bulky trimethylsilyl groups facilitating the close packing of the molecules with the adjacent layer along the c axis. The methyl hydrogen atoms of the trimethysilyl group form C—H···O hydrogen bonds with the carbonyl oxygen atom on the adjacent molecule (Fig. 3).

The acetylenic bond distance [C9—C10 1.200 (3) Å] corresponds with the average value detailed in Allen et al. (1987) for Csp[equivalent] Csp–Csp2 (Ar).

Experimental

The title compound (I), was synthesized from trimethylsilylacetylene and 4-iodo(methylbenzoate) using a Sonogashira cross-coupling-type reaction as detailed in (Fasina et al., 2005). Recrystallization from hexane afforded crystals of the title compound.

1H and 13C NMR spectra were recorded as an additional method of characterization, 1H NMR (CDCl3, 400 MHz): δ = 0.22 (9H, s, SiCH3), 3.89 (3H, s, CO2CH3), 7.49–7.53 (2H, m, ArH), 7.95–7.99 (2H, m, ArH); 13C-NMR (CDCl3, 75.5 MHz): δ = -0.44 (SiCH3), 52.063 (OCH3), 97.738 (CC), 104.16 (CC), 127.952 (ArH), 129.53 (ArH), 129.896 (ArH), 132.029 (ArH), 166.761 (CO)

Refinement

Hydrogen atoms were refined in calculated positions, using a riding model (C–H = 0.98–0.99 Å, Uiso(H) = 1.5Ueq(C) for methyl C or 1.2Ueq(C) or the remaining C atoms).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
Fig. 2.
Herring-bone arrangement of the molecules, viewed down the c axis.
Fig. 3.
C—H···O hydrogen bonds formed between a methyl hydrogen of the trimethylsilyl group and a neighbouring carbonyl oxygen atom. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H16O2SiF000 = 496
Mr = 232.35Dx = 1.184 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 1456 reflections
a = 6.1983 (11) Åθ = 2.8–23.3º
b = 7.1194 (12) ŵ = 0.16 mm1
c = 29.530 (5) ÅT = 100 (2) K
V = 1303.1 (4) Å3Plate, colourless
Z = 40.25 × 0.24 × 0.08 mm

Data collection

Bruker APEX CCD area-detector diffractometer3050 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 100(2) Kθmax = 28.3º
/w scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −7→8
Tmin = 0.960, Tmax = 0.987k = −8→9
8160 measured reflectionsl = −37→32

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058  w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2577P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.37 e Å3
3050 reflectionsΔρmin = −0.30 e Å3
149 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1136 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.68188 (11)0.55394 (11)0.42983 (2)0.01481 (17)
O10.1541 (3)0.5852 (3)0.12946 (6)0.0236 (5)
O2−0.1514 (3)0.4974 (3)0.16417 (6)0.0182 (4)
C10.1563 (4)0.5421 (4)0.20957 (8)0.0138 (5)
C20.3623 (4)0.6175 (4)0.21449 (9)0.0138 (5)
H20.43680.66460.18880.017*
C30.4582 (4)0.6241 (4)0.25659 (9)0.0146 (5)
H30.59810.67700.25980.017*
C40.3507 (4)0.5533 (4)0.29466 (8)0.0133 (5)
C50.1428 (4)0.4787 (4)0.28942 (8)0.0137 (5)
H50.06730.43220.31510.016*
C60.0467 (4)0.4724 (3)0.24702 (8)0.0138 (5)
H6−0.09360.42060.24360.017*
C70.0588 (4)0.5439 (4)0.16347 (8)0.0145 (5)
C8−0.2620 (4)0.5084 (4)0.12112 (9)0.0220 (7)
H8A−0.26960.63970.11130.033*
H8B−0.40840.45810.12440.033*
H8C−0.18310.43470.09850.033*
C90.4551 (4)0.5535 (4)0.33826 (8)0.0149 (5)
C100.5448 (4)0.5509 (4)0.37428 (8)0.0169 (5)
C110.9744 (4)0.5113 (5)0.42078 (10)0.0299 (8)
H11A0.99530.38560.40800.045*
H11B1.05050.52020.44980.045*
H11C1.03180.60550.39980.045*
C120.6371 (5)0.7888 (4)0.45560 (9)0.0219 (6)
H12A0.69890.88580.43600.033*
H12B0.70680.79370.48540.033*
H12C0.48190.81080.45910.033*
C130.5661 (5)0.3652 (4)0.46578 (10)0.0272 (7)
H13A0.40920.38060.46760.041*
H13B0.62810.37280.49620.041*
H13C0.59990.24260.45250.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0106 (3)0.0178 (4)0.0160 (3)0.0025 (3)−0.0022 (3)−0.0019 (3)
O10.0155 (9)0.0366 (12)0.0188 (10)−0.0016 (10)0.0001 (8)0.0049 (9)
O20.0108 (9)0.0249 (11)0.0189 (9)−0.0047 (8)−0.0051 (7)0.0009 (7)
C10.0119 (11)0.0130 (13)0.0166 (12)0.0010 (12)−0.0024 (9)−0.0018 (11)
C20.0115 (12)0.0129 (13)0.0171 (14)0.0011 (10)0.0019 (10)0.0008 (10)
C30.0085 (12)0.0145 (13)0.0208 (14)−0.0016 (10)−0.0010 (10)−0.0032 (11)
C40.0119 (11)0.0115 (12)0.0164 (12)0.0039 (12)−0.0024 (9)−0.0016 (11)
C50.0127 (12)0.0123 (13)0.0162 (12)−0.0025 (11)0.0024 (9)0.0015 (10)
C60.0115 (12)0.0086 (13)0.0213 (13)0.0009 (10)0.0001 (10)−0.0019 (11)
C70.0124 (11)0.0110 (12)0.0199 (13)0.0007 (11)−0.0024 (10)0.0001 (12)
C80.0181 (14)0.0266 (17)0.0212 (14)−0.0029 (11)−0.0079 (11)−0.0028 (12)
C90.0134 (11)0.0112 (12)0.0202 (13)−0.0005 (12)−0.0010 (10)−0.0013 (12)
C100.0122 (12)0.0167 (14)0.0218 (14)−0.0009 (12)0.0016 (10)−0.0021 (12)
C110.0186 (14)0.0392 (19)0.0320 (18)0.0086 (13)−0.0050 (12)−0.0188 (14)
C120.0231 (16)0.0255 (16)0.0171 (15)0.0053 (12)−0.0037 (12)−0.0011 (12)
C130.0223 (16)0.0280 (17)0.0313 (18)0.0039 (13)−0.0063 (13)0.0061 (14)

Geometric parameters (Å, °)

Si1—C101.848 (3)C5—H50.9500
Si1—C131.857 (3)C6—H60.9500
Si1—C111.858 (3)C8—H8A0.9800
Si1—C121.858 (3)C8—H8B0.9800
O1—C71.202 (3)C8—H8C0.9800
O2—C71.344 (3)C9—C101.200 (3)
O2—C81.447 (3)C9—C41.441 (3)
C1—C61.390 (3)C11—H11A0.9800
C1—C21.392 (3)C11—H11B0.9800
C1—C71.490 (3)C11—H11C0.9800
C2—H20.9500C12—H12A0.9800
C3—C21.379 (4)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C31.401 (3)C13—H13A0.9800
C4—C51.403 (3)C13—H13B0.9800
C5—C61.387 (3)C13—H13C0.9800
C10—Si1—C13108.75 (14)O1—C7—O2123.3 (2)
C10—Si1—C11108.62 (12)O1—C7—C1124.5 (2)
C13—Si1—C11109.95 (15)O2—C7—C1112.2 (2)
C10—Si1—C12107.78 (13)Si1—C11—H11A109.5
C13—Si1—C12111.06 (14)Si1—C11—H11B109.5
C11—Si1—C12110.61 (14)H11A—C11—H11B109.5
C7—O2—C8115.63 (19)Si1—C11—H11C109.5
C10—C9—C4178.7 (3)H11A—C11—H11C109.5
C3—C4—C5119.0 (2)H11B—C11—H11C109.5
C3—C4—C9120.2 (2)O2—C8—H8A109.5
C5—C4—C9120.8 (2)O2—C8—H8B109.5
C6—C1—C2120.2 (2)H8A—C8—H8B109.5
C6—C1—C7122.1 (2)O2—C8—H8C109.5
C2—C1—C7117.7 (2)H8A—C8—H8C109.5
C2—C3—C4120.4 (2)H8B—C8—H8C109.5
C2—C3—H3119.8Si1—C12—H12A109.5
C4—C3—H3119.8Si1—C12—H12B109.5
C3—C2—C1120.2 (2)H12A—C12—H12B109.5
C3—C2—H2119.9Si1—C12—H12C109.5
C1—C2—H2119.9H12A—C12—H12C109.5
C9—C10—Si1178.4 (3)H12B—C12—H12C109.5
C6—C5—C4120.4 (2)Si1—C13—H13A109.5
C6—C5—H5119.8Si1—C13—H13B109.5
C4—C5—H5119.8H13A—C13—H13B109.5
C5—C6—C1119.8 (2)Si1—C13—H13C109.5
C5—C6—H6120.1H13A—C13—H13C109.5
C1—C6—H6120.1H13B—C13—H13C109.5
C5—C4—C3—C2−1.1 (4)C2—C1—C6—C50.2 (4)
C9—C4—C3—C2177.5 (2)C7—C1—C6—C5−178.3 (2)
C4—C3—C2—C10.7 (4)C8—O2—C7—O1−2.8 (4)
C6—C1—C2—C3−0.2 (4)C8—O2—C7—C1175.9 (2)
C7—C1—C2—C3178.3 (2)C6—C1—C7—O1−172.3 (3)
C3—C4—C5—C61.1 (4)C2—C1—C7—O19.2 (4)
C9—C4—C5—C6−177.5 (2)C6—C1—C7—O29.0 (4)
C4—C5—C6—C1−0.6 (4)C2—C1—C7—O2−169.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.583.470 (4)151
C12—H12A···O1ii0.982.573.527 (3)167

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2120).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des.3, 3–8.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2002). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dybtsev, D. N., Chun, H. & Kim, K. (2004). Angew. Chem. Int. Ed.43, 5033–5036. [PubMed]
  • Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Fasina, T. M., Collings, J. C., Burke, J. M., Batsanov, A. S., Ward, R. M., Albesa-Jové, D., Porrès, L., Beeby, A., Howard, J. A. K., Scott, A. J., Clegg, W., Watt, S. W., Viney, C. & Marder, T. B. (2005). J. Mater. Chem.15, 690–697.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kesanli, B., Cui, Y., Smith, M. R., Bittner, E. W., Bockrath, B. L. & Lin, W. (2005). Angew. Chem. Int. Ed.44, 72–75. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.
  • Zhao, X., Xiao, B., Fletcher, A. J., Thomas, K. M., Bradshaw, D. & Rosseinsky, M. J. (2004). Science, 306, 1012–1015. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography