PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1035.
Published online 2008 May 10. doi:  10.1107/S1600536808013287
PMCID: PMC2961546

3,4-Dihydroxy­benzaldehyde 4-phenyl­thio­semicarbazone

Abstract

Mol­ecules of the title compound, C14H13N3O2S, are linked by inter­molecular O—H(...)O hydrogen bonds into centrosymmetric dimers forming R 2 2(4) rings which are further linked by O—H(...)S hydrogen bonds and weaker N—H(...)S and N—H(...)O hydrogen bonds to form a three-dimensional network.

Related literature

For the structure of 2,3-dihydroxy­benzaldehyde thio­semi­carbazone hemihydrate, see: Swesi et al. (2006 [triangle]). For metal derivatives of the title compound, see: Zhu et al. (1997 [triangle]). The graph-set notation is given by Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1035-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O2S
  • M r = 287.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1035-efi1.jpg
  • a = 9.7261 (2) Å
  • b = 13.1863 (3) Å
  • c = 10.7732 (3) Å
  • β = 99.055 (2)°
  • V = 1364.46 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.909, T max = 0.953
  • 16724 measured reflections
  • 3132 independent reflections
  • 2358 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.115
  • S = 1.04
  • 3132 reflections
  • 197 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013287/lh2625sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013287/lh2625Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (P0265/2007 A) for supporting this study; KWT thanks the Ministry of Higher Education for an SLAI scholarship in this research.

supplementary crystallographic information

Comment

A previous study of the Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides reported the 2,3-dihydroxy compound, which crystallizes as a hemihydrate. The compound features extensive hydrogen bond (Swesi et al., 2006). In the title 3,4-dihydroxy isomer the 4-hydroxy group functions as hydrogen-bond donor to the 3-hydroxy group of a symmetry-related molecule forming R22(4) rings (Bernstein et al., 1995). In addition, the 3-hydroxy group is a donor to the sulfur atom of another molecule; the hydrogen bonding arrangement furnishes a three-dimensional network motif. The amino groups are involved in weaker hydrogen bond interactions.

Further work will investigate the formation of metal deratives of the ligand; some metal complexes have been reported by others but these have not characterized by crystallography yet (Zhu et al., 1997).

Experimental

4-Phenylthiosemicarbazide (0.17 g, 1 mmol) and 3,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (20 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H = N–H = 0.85±0.01 Å; their temperature factors were similarly tied.

Figures

Fig. 1.
Thermal ellipsoid (Barbour, 2001) plot of C14H13N3O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Crystal data

C14H13N3O2SF000 = 600
Mr = 287.33Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2291 reflections
a = 9.7261 (2) Åθ = 2.5–23.4º
b = 13.1863 (3) ŵ = 0.24 mm1
c = 10.7732 (3) ÅT = 100 (2) K
β = 99.055 (2)ºBlock, yellow
V = 1364.46 (6) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3132 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.078
T = 100(2) Kθmax = 27.5º
ω scansθmin = 2.1º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.910, Tmax = 0.953k = −17→16
16724 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3132 reflectionsΔρmax = 0.40 e Å3
197 parametersΔρmin = −0.32 e Å3
4 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.08441 (5)0.12769 (4)0.40212 (5)0.02006 (15)
O10.65919 (15)0.45705 (10)0.89678 (14)0.0221 (3)
O20.40955 (14)0.39195 (11)0.94986 (14)0.0231 (3)
N10.83208 (16)0.18905 (12)0.63925 (15)0.0187 (4)
N20.90695 (16)0.13520 (12)0.56294 (16)0.0185 (4)
N31.03542 (19)0.27810 (13)0.55853 (18)0.0258 (4)
C10.64419 (19)0.20682 (14)0.75172 (18)0.0172 (4)
C20.6914 (2)0.30261 (14)0.79586 (18)0.0177 (4)
H20.77980.32620.78140.021*
C30.61093 (19)0.36257 (14)0.85974 (18)0.0168 (4)
C40.48283 (19)0.32692 (15)0.88517 (18)0.0175 (4)
C50.4360 (2)0.23207 (15)0.84415 (19)0.0207 (4)
H50.34920.20770.86200.025*
C60.5160 (2)0.17194 (15)0.77643 (19)0.0204 (4)
H60.48310.10710.74710.024*
C70.72652 (19)0.14733 (15)0.67561 (19)0.0190 (4)
H70.70220.07920.65360.023*
C81.00702 (19)0.18502 (14)0.51400 (19)0.0177 (4)
C91.1227 (2)0.35150 (15)0.5122 (2)0.0212 (4)
C101.2393 (2)0.38550 (18)0.5909 (2)0.0304 (5)
H101.26510.35650.67190.037*
C111.3183 (3)0.4624 (2)0.5504 (2)0.0386 (6)
H111.39860.48630.60420.046*
C121.2821 (2)0.50451 (18)0.4336 (2)0.0339 (6)
H121.33660.55760.40700.041*
C131.1657 (2)0.46947 (18)0.3545 (2)0.0348 (6)
H131.14100.49770.27290.042*
C141.0858 (2)0.39327 (17)0.3946 (2)0.0287 (5)
H141.00530.36960.34100.034*
H1O0.602 (2)0.4875 (17)0.935 (2)0.035 (7)*
H2O0.3276 (14)0.3698 (18)0.950 (3)0.043 (8)*
H2N0.890 (2)0.0737 (9)0.542 (2)0.036 (7)*
H3N0.995 (2)0.2960 (17)0.6187 (16)0.027 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0175 (2)0.0195 (3)0.0249 (3)0.00003 (19)0.00859 (19)−0.0035 (2)
O10.0209 (7)0.0162 (7)0.0316 (9)−0.0015 (6)0.0116 (6)−0.0063 (6)
O20.0158 (7)0.0226 (8)0.0328 (9)−0.0011 (6)0.0093 (6)−0.0075 (6)
N10.0181 (8)0.0188 (9)0.0207 (9)0.0021 (7)0.0081 (7)−0.0017 (7)
N20.0173 (8)0.0148 (9)0.0250 (9)−0.0013 (7)0.0086 (7)−0.0043 (7)
N30.0313 (10)0.0202 (9)0.0310 (11)−0.0081 (8)0.0202 (8)−0.0076 (8)
C10.0159 (9)0.0187 (10)0.0178 (10)−0.0003 (7)0.0048 (8)−0.0011 (8)
C20.0146 (9)0.0178 (10)0.0216 (10)−0.0011 (7)0.0056 (8)−0.0001 (8)
C30.0169 (9)0.0148 (10)0.0184 (10)−0.0004 (7)0.0016 (7)0.0000 (7)
C40.0148 (9)0.0204 (10)0.0183 (10)0.0026 (7)0.0052 (7)−0.0008 (8)
C50.0141 (9)0.0206 (10)0.0285 (12)−0.0020 (8)0.0064 (8)−0.0007 (8)
C60.0199 (10)0.0175 (10)0.0246 (11)−0.0030 (8)0.0061 (8)−0.0026 (8)
C70.0185 (10)0.0168 (10)0.0223 (11)−0.0018 (8)0.0054 (8)−0.0027 (8)
C80.0145 (9)0.0167 (10)0.0224 (10)0.0011 (7)0.0046 (8)−0.0002 (8)
C90.0204 (10)0.0170 (10)0.0287 (12)−0.0037 (8)0.0114 (8)−0.0041 (8)
C100.0317 (12)0.0345 (13)0.0248 (12)−0.0058 (10)0.0034 (9)0.0012 (10)
C110.0328 (13)0.0442 (15)0.0381 (15)−0.0193 (11)0.0032 (11)−0.0047 (11)
C120.0323 (13)0.0250 (12)0.0474 (16)−0.0093 (10)0.0155 (11)0.0037 (11)
C130.0336 (13)0.0312 (13)0.0396 (15)0.0016 (10)0.0059 (11)0.0148 (11)
C140.0211 (10)0.0310 (12)0.0328 (13)−0.0033 (9)0.0011 (9)0.0030 (10)

Geometric parameters (Å, °)

S1—C81.696 (2)C3—C41.398 (3)
O1—C31.368 (2)C4—C51.380 (3)
O1—H1O0.85 (1)C5—C61.395 (3)
O2—C41.373 (2)C5—H50.9500
O2—H2O0.85 (1)C6—H60.9500
N1—C71.279 (2)C7—H70.9500
N1—N21.378 (2)C9—C141.376 (3)
N2—C81.348 (2)C9—C101.380 (3)
N2—H2N0.85 (1)C10—C111.383 (3)
N3—C81.331 (3)C10—H100.9500
N3—C91.428 (3)C11—C121.370 (3)
N3—H3N0.84 (1)C11—H110.9500
C1—C61.393 (3)C12—C131.385 (3)
C1—C21.401 (3)C12—H120.9500
C1—C71.461 (3)C13—C141.381 (3)
C2—C31.372 (3)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—O1—H1O110.7 (17)C5—C6—H6119.9
C4—O2—H2O110.6 (18)N1—C7—C1118.55 (17)
C7—N1—N2119.07 (16)N1—C7—H7120.7
C8—N2—N1117.64 (16)C1—C7—H7120.7
C8—N2—H2N119.3 (17)N3—C8—N2115.47 (17)
N1—N2—H2N123.0 (17)N3—C8—S1125.24 (15)
C8—N3—C9126.89 (17)N2—C8—S1119.28 (15)
C8—N3—H3N116.2 (16)C14—C9—C10120.35 (19)
C9—N3—H3N116.9 (16)C14—C9—N3120.67 (19)
C6—C1—C2119.21 (17)C10—C9—N3118.8 (2)
C6—C1—C7121.05 (18)C9—C10—C11119.2 (2)
C2—C1—C7119.68 (17)C9—C10—H10120.4
C3—C2—C1120.50 (17)C11—C10—H10120.4
C3—C2—H2119.7C12—C11—C10120.8 (2)
C1—C2—H2119.7C12—C11—H11119.6
O1—C3—C2118.33 (17)C10—C11—H11119.6
O1—C3—C4121.62 (17)C11—C12—C13119.8 (2)
C2—C3—C4120.06 (17)C11—C12—H12120.1
O2—C4—C5123.84 (17)C13—C12—H12120.1
O2—C4—C3116.05 (17)C14—C13—C12119.7 (2)
C5—C4—C3120.10 (18)C14—C13—H13120.1
C4—C5—C6119.95 (18)C12—C13—H13120.1
C4—C5—H5120.0C9—C14—C13120.1 (2)
C6—C5—H5120.0C9—C14—H14119.9
C1—C6—C5120.14 (18)C13—C14—H14119.9
C1—C6—H6119.9
C7—N1—N2—C8172.24 (18)C2—C1—C7—N1−7.8 (3)
C6—C1—C2—C3−1.7 (3)C9—N3—C8—N2−171.35 (19)
C7—C1—C2—C3175.33 (18)C9—N3—C8—S17.8 (3)
C1—C2—C3—O1−177.55 (17)N1—N2—C8—N38.7 (3)
C1—C2—C3—C42.2 (3)N1—N2—C8—S1−170.51 (13)
O1—C3—C4—O2−0.4 (3)C8—N3—C9—C1466.2 (3)
C2—C3—C4—O2179.82 (17)C8—N3—C9—C10−118.6 (2)
O1—C3—C4—C5178.64 (18)C14—C9—C10—C110.3 (3)
C2—C3—C4—C5−1.1 (3)N3—C9—C10—C11−174.9 (2)
O2—C4—C5—C6178.51 (18)C9—C10—C11—C12−0.2 (4)
C3—C4—C5—C6−0.5 (3)C10—C11—C12—C13−0.5 (4)
C2—C1—C6—C50.1 (3)C11—C12—C13—C141.0 (4)
C7—C1—C6—C5−176.89 (18)C10—C9—C14—C130.1 (3)
C4—C5—C6—C11.0 (3)N3—C9—C14—C13175.3 (2)
N2—N1—C7—C1−177.22 (16)C12—C13—C14—C9−0.8 (4)
C6—C1—C7—N1169.23 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.85 (1)2.03 (2)2.737 (2)141 (2)
O2—H2O···S1ii0.85 (1)2.34 (1)3.134 (1)156 (2)
N2—H2N···S1iii0.85 (1)2.73 (1)3.487 (2)150 (2)
N2—H2N···O1iv0.85 (1)2.56 (2)3.022 (2)115 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2625).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.
  • Westrip, S. P. (2008). publCIF In preparation.
  • Zhu, X. D., Wang, G. C., Lu, Z. P. & Li, Y. L. (1997). Transition Met. Chem.22, 9–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography