PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1133–o1134.
Published online 2008 May 21. doi:  10.1107/S1600536808014773
PMCID: PMC2961545

Dimethyl 2-(methyl­amino­methyl­ene)malonate

Abstract

In the title compound, C7H11NO4, which is an example of a push–pull alkene, a network of N—H(...)O and C—H(...)O inter­actions helps to establish the crystal structure. The investigated crystal turned out to be a non-merohedral twin with a ratio of twin components of 0.442 (3):0.558 (3). Two pairs of independent mol­ecules (Z′ = 4) are linked by inter­molecular N—H(...)O hydrogen bonds, forming independent chains; the chains are connected via inter­molecular C—H(...)O contacts, building a three-dimensional network.

Related literature

For related literature, see: Bouzard (1990 [triangle]); Cook (1969 [triangle]); Dyke (1973 [triangle]); Freeman (1981 [triangle]); Gróf et al. (2008 [triangle]); Kálmán & Argay (1998 [triangle]); Bolte (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1133-scheme1.jpg

Experimental

Crystal data

  • C7H11NO4
  • M r = 173.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1133-efi1.jpg
  • a = 11.165 (2) Å
  • b = 12.073 (2) Å
  • c = 13.211 (3) Å
  • α = 113.70 (3)°
  • β = 93.71 (3)°
  • γ = 94.02 (3)°
  • V = 1618.1 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.43 × 0.15 × 0.08 mm

Data collection

  • Oxford Diffraction GEMINI R diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.968, T max = 0.996
  • 9295 measured reflections
  • 9295 independent reflections
  • 3920 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.091
  • wR(F 2) = 0.257
  • S = 0.90
  • 9295 reflections
  • 446 parameters
  • 96 restraints
  • H-atom parameters constrained
  • Δρmax = 1.13 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014773/si2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014773/si2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic, grant Nos. APVT-20–007304 and VEGA 1/0817/08.

supplementary crystallographic information

Comment

The title compound, C7 H11 N O4, belongs to the so-called push-pull olefins. Push-pull alkenes are substituted ethylenes containing electron-donor groups (D) at one end and electron-acceptor groups (A) at the other end of the general formula D1D2C=CA1A2. These compounds very often contain alkoxy, amino, alkylamino, dialkylamino or (hetero)aryl groups as electron-donor groups and cyano, acetyl, alkylester, methylsulfonyl or NO2 groups as electron-acceptor groups. They are useful as starting reactants or intermediates for a lot of pharmaceutical, polymer and other syntheses (Cook, 1969; Dyke, 1973). Mainly enamines are frequently used as reactants or intermediates in chemical syntheses of drugs, polymers and dyes (Bouzard, 1990). But also alkoxymethylenes are often used in organic synthesis (Freeman, 1981).

Chemical and physical properties of the title related structures were recently discussed (Gróf et al., 2008 and literature cited therein).

The study of a similar compound, dimethyl 2-(aminomethylene)malonate, (Gróf et al., 2008) revealed that this structure exists in the solid phase as EZ conformer (E denotes away from C=C double bond orientation of the carbonyl oxygen in trans position; Z denotes towards to C=C double bond orientation of the carbonyl oxygen in cis position). The title compound exists in the solid phase as ZZa conformer (a denotes anti orientation of the methylamino group, e.g. away from the C=C double bond orientation).

The molecules I and II, and molecules III and IV of the title compound (Fig.1) show pseudo translation (Kálmán & Argay, (1998).

Experimental

To dimethyl 3-methoxymethylenemalonate (1.74 g, 10 mmol) in methanol (10 ml), an aqueous solution of methylamine (12 mmol) was added dropwise (amount according to concentration and density) over a period of 30 min with stirring. The slightly warmed mixture was stirred overnight at room temperature. The reaction mixture was then briefly heated to reflux (ca. 20 min). After ensuring that no starting derivative remained (thin-layer chromatography; Silufol 254, Kavalier Czechoslovakia; eluent chloroform-methanol 10:1 v/v, detection UV light 254 nm), the reaction mixture was evaporated on a vacuum evaporator and chromatographed on silica gel (eluent dichloromethane-methanol 10:1 v/v). Obtained product was recrystallized from minimal amount of chloroform and n-hexane mixture in refrigerator.

The solid phase mid-IR vibrational spectrum was recorded with a Nicolet model NEXUS 470 FTIR spectrometer at room temperature. The measurement was performed after mixing the powdered sample with KBr into a pellet.

The mid-IR vibrational frequencies of dimethyl 2-(methylaminomethylene)malonate are (in cm-1): 3301 m; 3199 w, sh, b; 3092 vw; 3052 vw; 3039 vw; 3013 w; 2999 w; 2951 m; 2924 w, sh; 2905 vw, sh; 1701 vw, sh; 1680 v s; 1651 vw, sh; 1631 v s; 1612 w, sh; 1541 vw; 1478 w; 1450 m; 1430 m; 1405 m; 1360 s; 1330 vw, sh; 1322 m; 1281 s; 1225 s; 1187 m; 1151 s; 1082 m; 1042 w; 1018 m; 998 w; 942 vw; 837 vw, sh; 820 s; 808 s; 768 m; 759 vw, sh; 671 m; 579 w, b; 459 vw; 446 vw; 413 m.

Refinement

Olefinic and amino H atoms were positioned geometrically and allowed to ride on their corresponding parent atoms at distances of 0.93 and 0.86 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). Methyl H atoms were located in a difference Fourier map and included in the model as a rigid rotating group, with C—H distance of 0.96 Å and with Uiso(H) = 1.5Ueq(C).

The investigated crystal was a non-merohedral twin. Two orientation matrices could be determined and the twin law was derived using the program TWINLAW (Bolte, 2004):

h(twin) = (1.00 * h) + (0.00 * k) + (0.00 * l)

k(twin) = (-0.15 * h) + (-1.00 * k) + (0.00 * l)

l(twin) = (-0.16 * h) + (0.00 * k) + (-1.00 *l).

For the refinement the reflection data file was modified using the program HKLF5 (Bolte, 2004). The contribution of the minor twin component refined to 0.442 (3).

Figures

Fig. 1.
The atom-numbering scheme of dimethyl 2-(methylaminomethylene)malonate. Displacement ellipsoids are drawn at the 60% probability level.
Fig. 2.
Packing diagram of dimethyl 2-(methylaminomethylene)malonate. Hydrogen-bond interactions are indicated by dashed lines.

Crystal data

C7H11NO4Z = 8
Mr = 173.17F000 = 736
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 11.165 (2) ÅCell parameters from 2135 reflections
b = 12.073 (2) Åθ = 3.3–29.5º
c = 13.211 (3) ŵ = 0.12 mm1
α = 113.70 (3)ºT = 100 K
β = 93.71 (3)ºBlock, yellow
γ = 94.02 (3)º0.43 × 0.15 × 0.08 mm
V = 1618.1 (6) Å3

Data collection

Oxford Diffraction GEMINI R diffractometer9295 independent reflections
Radiation source: fine-focus sealed tube3920 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.0000
T = 100 Kθmax = 25.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 4.1º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006)h = −13→13
Tmin = 0.968, Tmax = 0.996k = −14→14
9295 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.257  w = 1/[σ2(Fo2) + (0.1527P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.067
9295 reflectionsΔρmax = 1.13 e Å3
446 parametersΔρmin = −0.54 e Å3
96 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006). 96 rigid bond restaints (DELU) were used in the refinement because the data to parameter ratio is low due to four independent molecules in the twinned structure.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0504 (4)0.1221 (5)0.6433 (4)0.0202 (11)
C21.1715 (5)0.1334 (5)0.6103 (4)0.0234 (11)
C31.2819 (5)0.1043 (5)0.6504 (4)0.0238 (11)
C41.1851 (5)0.1766 (5)0.5297 (4)0.0274 (12)
H4A1.26340.18150.51060.033*
C51.3825 (4)0.0278 (5)0.7690 (4)0.0327 (14)
H5C1.3656−0.00790.82030.039*
H5B1.43500.10190.80660.039*
H5A1.4210−0.02790.70900.039*
C60.9264 (4)0.0767 (5)0.7613 (4)0.0241 (12)
H6C0.93110.05280.82240.029*
H6B0.87230.01820.70120.029*
H6A0.89700.15520.78480.029*
C71.1353 (4)0.2577 (5)0.3932 (4)0.0298 (13)
H7C1.11680.34040.41760.036*
H7B1.08890.20870.32360.036*
H7A1.21980.25460.38400.036*
O10.9618 (3)0.1470 (3)0.6036 (3)0.0317 (9)
O21.3803 (3)0.1235 (3)0.6240 (3)0.0294 (9)
O31.0441 (3)0.0828 (3)0.7250 (3)0.0257 (8)
O41.2710 (3)0.0540 (3)0.7254 (3)0.0303 (9)
N11.1056 (4)0.2113 (4)0.4763 (3)0.0290 (11)
H11.03170.20690.49020.035*
C80.0163 (4)0.1936 (5)1.0767 (4)0.0227 (11)
C90.1389 (4)0.2097 (5)1.0475 (4)0.0198 (10)
C100.2442 (4)0.1583 (5)1.0733 (4)0.0234 (11)
C110.1614 (4)0.2782 (5)0.9871 (4)0.0224 (11)
H11A0.24050.28350.96990.027*
C120.3325 (4)0.0431 (6)1.1587 (4)0.0374 (14)
H12C0.3077−0.01891.18350.045*
H12B0.38550.10611.21650.045*
H12A0.37420.00821.09360.045*
C13−0.1214 (4)0.1026 (5)1.1526 (4)0.0261 (13)
H13C−0.12690.04281.18330.031*
H13B−0.17670.07631.08660.031*
H13A−0.14150.17881.20610.031*
C140.1222 (4)0.3979 (5)0.8809 (4)0.0231 (12)
H14C0.10540.48120.91460.028*
H14B0.07700.35830.80920.028*
H14A0.20680.39490.87280.028*
O5−0.0631 (3)0.2510 (3)1.0591 (3)0.0302 (9)
O60.3444 (3)0.1722 (3)1.0442 (3)0.0350 (10)
O7−0.0002 (3)0.1176 (3)1.1253 (3)0.0272 (9)
O80.2281 (3)0.0937 (3)1.1328 (3)0.0290 (9)
N20.0879 (3)0.3365 (4)0.9506 (3)0.0262 (10)
H20.01530.33860.96900.031*
C150.5457 (4)0.3104 (5)0.4300 (4)0.0228 (11)
C160.6700 (4)0.2928 (5)0.4565 (4)0.0211 (11)
C170.7792 (4)0.3434 (5)0.4301 (4)0.0233 (11)
C180.6930 (4)0.2229 (5)0.5142 (4)0.0205 (11)
H18A0.77340.21250.52710.025*
C190.8722 (4)0.4640 (5)0.3477 (4)0.0289 (13)
H19C0.85300.52190.31780.035*
H19B0.90680.39810.29300.035*
H19A0.92910.50300.41260.035*
C200.4082 (4)0.4033 (5)0.3540 (4)0.0277 (13)
H20C0.40740.46510.32570.033*
H20B0.36760.42780.42030.033*
H20A0.36770.32840.29920.033*
C210.6479 (4)0.1022 (5)0.6200 (4)0.0203 (11)
H21C0.60400.02270.58900.024*
H21B0.62930.14550.69490.024*
H21A0.73290.09470.61970.024*
O90.4592 (3)0.2600 (3)0.4495 (3)0.0293 (9)
O100.8808 (3)0.3234 (3)0.4529 (3)0.0315 (9)
O110.5322 (3)0.3861 (3)0.3795 (3)0.0255 (8)
O120.7640 (3)0.4176 (3)0.3774 (3)0.0276 (9)
N30.6133 (3)0.1691 (4)0.5531 (3)0.0231 (10)
H30.53790.17320.53890.028*
C220.5158 (4)0.3785 (5)0.8567 (4)0.0194 (10)
C230.6390 (5)0.3641 (5)0.8899 (4)0.0239 (11)
C240.7487 (4)0.3923 (5)0.8491 (4)0.0208 (11)
C250.6589 (4)0.3189 (5)0.9702 (4)0.0240 (11)
H25A0.73890.31170.98840.029*
C260.8480 (4)0.4731 (5)0.7386 (4)0.0313 (14)
H26C0.83010.50260.68230.038*
H26B0.88830.40100.70780.038*
H26A0.89920.53440.79930.038*
C270.3829 (4)0.4259 (5)0.7369 (4)0.0283 (13)
H27C0.38400.45110.67670.034*
H27B0.34860.48540.79770.034*
H27A0.33520.34880.71260.034*
C280.6131 (4)0.2394 (5)1.1070 (4)0.0288 (13)
H28C0.57230.15941.08570.035*
H28B0.59010.29281.17760.035*
H28A0.69880.23571.11270.035*
O130.4292 (3)0.3554 (3)0.8977 (3)0.0285 (9)
O140.8494 (3)0.3706 (3)0.8760 (3)0.0303 (9)
O150.5064 (3)0.4145 (3)0.7733 (3)0.0274 (9)
O160.7371 (3)0.4453 (3)0.7781 (3)0.0281 (9)
N40.5799 (3)0.2852 (4)1.0234 (3)0.0279 (11)
H40.50480.29021.00870.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0197 (14)0.022 (3)0.023 (3)−0.001 (2)0.0012 (18)0.015 (2)
C20.0238 (14)0.027 (3)0.028 (3)0.004 (2)0.010 (2)0.018 (2)
C30.0194 (13)0.024 (3)0.032 (3)−0.005 (2)0.0010 (19)0.016 (2)
C40.025 (2)0.038 (4)0.028 (3)0.001 (2)0.0052 (19)0.021 (2)
C50.017 (2)0.051 (4)0.037 (3)0.010 (3)0.002 (2)0.024 (3)
C60.016 (2)0.029 (3)0.033 (3)0.003 (2)0.010 (2)0.017 (3)
C70.019 (3)0.047 (4)0.039 (3)0.007 (3)0.008 (2)0.032 (3)
O10.0238 (14)0.045 (3)0.039 (2)0.0054 (18)0.0020 (16)0.0304 (19)
O20.0227 (13)0.035 (2)0.037 (2)0.0020 (17)0.0098 (15)0.0208 (19)
O30.0162 (16)0.041 (2)0.033 (2)0.0036 (16)0.0077 (14)0.0271 (17)
O40.0117 (16)0.050 (3)0.043 (2)0.0040 (16)0.0044 (14)0.0333 (18)
N10.022 (2)0.040 (3)0.037 (3)0.000 (2)0.0054 (17)0.028 (2)
C80.0168 (15)0.033 (3)0.030 (3)0.004 (2)0.009 (2)0.023 (2)
C90.0169 (15)0.028 (3)0.021 (3)0.0014 (19)0.009 (2)0.015 (2)
C100.0171 (15)0.039 (3)0.024 (3)0.004 (2)0.009 (2)0.022 (2)
C110.012 (2)0.032 (3)0.032 (3)−0.0026 (19)0.0027 (19)0.022 (2)
C120.023 (3)0.056 (4)0.048 (4)0.015 (3)0.005 (3)0.034 (3)
C130.014 (2)0.037 (4)0.038 (3)0.002 (2)0.010 (2)0.026 (3)
C140.023 (3)0.028 (3)0.023 (3)0.002 (2)0.005 (2)0.015 (2)
O50.0174 (15)0.045 (3)0.042 (2)0.0075 (16)0.0068 (16)0.0311 (19)
O60.0161 (14)0.058 (3)0.050 (2)0.0019 (18)0.0111 (17)0.041 (2)
O70.0144 (16)0.043 (2)0.040 (2)0.0013 (15)0.0094 (15)0.0329 (18)
O80.0155 (17)0.049 (3)0.042 (2)0.0103 (16)0.0146 (15)0.0355 (18)
N20.013 (2)0.039 (3)0.039 (3)0.0046 (18)0.0077 (18)0.028 (2)
C150.0119 (11)0.033 (3)0.030 (3)−0.0031 (19)−0.005 (2)0.022 (2)
C160.0128 (11)0.032 (3)0.027 (3)0.0031 (19)0.001 (2)0.021 (2)
C170.0135 (12)0.040 (3)0.026 (3)0.003 (2)0.003 (2)0.023 (2)
C180.012 (2)0.031 (3)0.025 (3)0.0008 (19)0.0000 (19)0.019 (2)
C190.012 (2)0.040 (4)0.043 (3)−0.004 (2)0.005 (2)0.026 (3)
C200.0096 (19)0.041 (4)0.042 (3)0.003 (2)−0.003 (2)0.026 (3)
C210.013 (3)0.029 (3)0.025 (3)−0.001 (2)0.002 (2)0.017 (2)
O90.0130 (12)0.044 (2)0.042 (2)−0.0022 (16)−0.0003 (16)0.0305 (19)
O100.0138 (11)0.051 (3)0.044 (2)0.0069 (16)0.0047 (16)0.033 (2)
O110.0089 (15)0.041 (2)0.040 (2)0.0046 (14)0.0015 (14)0.0301 (18)
O120.0089 (16)0.039 (2)0.047 (2)−0.0023 (14)0.0013 (15)0.0319 (18)
N30.013 (2)0.030 (3)0.036 (3)0.0008 (17)0.0019 (17)0.022 (2)
C220.0149 (12)0.021 (3)0.028 (3)−0.005 (2)0.0005 (17)0.017 (2)
C230.0187 (12)0.033 (4)0.026 (3)0.002 (2)0.0005 (19)0.018 (2)
C240.0151 (13)0.023 (3)0.031 (3)0.002 (2)−0.0005 (19)0.018 (2)
C250.017 (2)0.032 (3)0.030 (3)0.002 (2)0.0029 (18)0.019 (2)
C260.020 (2)0.042 (4)0.033 (3)−0.007 (3)0.006 (2)0.019 (3)
C270.0096 (19)0.045 (4)0.040 (3)0.000 (2)−0.001 (2)0.028 (3)
C280.016 (3)0.044 (4)0.040 (3)0.004 (2)0.009 (2)0.029 (3)
O130.0200 (13)0.040 (2)0.035 (2)−0.0019 (17)0.0086 (15)0.0246 (18)
O140.0181 (12)0.040 (3)0.040 (2)0.0072 (17)−0.0039 (15)0.0246 (19)
O150.0099 (15)0.048 (3)0.039 (2)−0.0001 (16)0.0013 (14)0.0338 (19)
O160.0100 (16)0.047 (3)0.043 (2)0.0014 (16)0.0000 (14)0.0347 (18)
N40.018 (2)0.035 (3)0.041 (3)−0.0015 (19)0.0029 (17)0.026 (2)

Geometric parameters (Å, °)

C1—O11.202 (5)C15—O91.204 (5)
C1—O31.346 (5)C15—O111.341 (6)
C1—C21.461 (6)C15—C161.460 (6)
C2—C41.373 (6)C16—C181.372 (6)
C2—C31.432 (7)C16—C171.450 (7)
C3—O21.208 (5)C17—O101.220 (5)
C3—O41.362 (6)C17—O121.350 (6)
C4—N11.292 (6)C18—N31.313 (6)
C4—H4A0.9300C18—H18A0.9300
C5—O41.447 (5)C19—O121.439 (5)
C5—H5C0.9600C19—H19C0.9600
C5—H5B0.9600C19—H19B0.9600
C5—H5A0.9600C19—H19A0.9600
C6—O31.435 (5)C20—O111.452 (5)
C6—H6C0.9600C20—H20C0.9600
C6—H6B0.9600C20—H20B0.9600
C6—H6A0.9600C20—H20A0.9600
C7—N11.465 (6)C21—N31.467 (6)
C7—H7C0.9600C21—H21C0.9600
C7—H7B0.9600C21—H21B0.9600
C7—H7A0.9600C21—H21A0.9600
N1—H10.8600N3—H30.8600
C8—O51.228 (5)C22—O131.207 (5)
C8—O71.326 (6)C22—O151.338 (5)
C8—C91.466 (6)C22—C231.459 (6)
C9—C111.383 (6)C23—C251.388 (7)
C9—C101.450 (6)C23—C241.443 (7)
C10—O61.228 (5)C24—O141.235 (5)
C10—O81.324 (5)C24—O161.335 (6)
C11—N21.305 (6)C25—N41.302 (6)
C11—H11A0.9300C25—H25A0.9300
C12—O81.438 (5)C26—O161.444 (5)
C12—H12C0.9600C26—H26C0.9600
C12—H12B0.9600C26—H26B0.9600
C12—H12A0.9600C26—H26A0.9600
C13—O71.440 (5)C27—O151.465 (5)
C13—H13C0.9600C27—H27C0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13A0.9600C27—H27A0.9600
C14—N21.449 (6)C28—N41.460 (6)
C14—H14C0.9600C28—H28C0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14A0.9600C28—H28A0.9600
N2—H20.8600N4—H40.8600
O1—C1—O3121.1 (4)O9—C15—O11120.7 (4)
O1—C1—C2124.2 (5)O9—C15—C16123.5 (5)
O3—C1—C2114.7 (4)O11—C15—C16115.8 (4)
C4—C2—C3113.4 (5)C18—C16—C17112.7 (4)
C4—C2—C1117.9 (5)C18—C16—C15119.9 (4)
C3—C2—C1128.7 (5)C17—C16—C15127.4 (5)
O2—C3—O4120.0 (5)O10—C17—O12119.6 (4)
O2—C3—C2124.8 (5)O10—C17—C16124.3 (5)
O4—C3—C2115.2 (4)O12—C17—C16116.1 (4)
N1—C4—C2129.8 (5)N3—C18—C16126.8 (4)
N1—C4—H4A115.1N3—C18—H18A116.6
C2—C4—H4A115.1C16—C18—H18A116.6
O4—C5—H5C109.5O12—C19—H19C109.5
O4—C5—H5B109.5O12—C19—H19B109.5
H5C—C5—H5B109.5H19C—C19—H19B109.5
O4—C5—H5A109.5O12—C19—H19A109.5
H5C—C5—H5A109.5H19C—C19—H19A109.5
H5B—C5—H5A109.5H19B—C19—H19A109.5
O3—C6—H6C109.5O11—C20—H20C109.5
O3—C6—H6B109.5O11—C20—H20B109.5
H6C—C6—H6B109.5H20C—C20—H20B109.5
O3—C6—H6A109.5O11—C20—H20A109.5
H6C—C6—H6A109.5H20C—C20—H20A109.5
H6B—C6—H6A109.5H20B—C20—H20A109.5
N1—C7—H7C109.5N3—C21—H21C109.5
N1—C7—H7B109.5N3—C21—H21B109.5
H7C—C7—H7B109.5H21C—C21—H21B109.5
N1—C7—H7A109.5N3—C21—H21A109.5
H7C—C7—H7A109.5H21C—C21—H21A109.5
H7B—C7—H7A109.5H21B—C21—H21A109.5
C1—O3—C6115.1 (4)C15—O11—C20115.3 (4)
C3—O4—C5115.6 (4)C17—O12—C19115.9 (4)
C4—N1—C7123.2 (4)C18—N3—C21122.5 (4)
C4—N1—H1118.4C18—N3—H3118.7
C7—N1—H1118.4C21—N3—H3118.7
O5—C8—O7123.5 (4)O13—C22—O15122.7 (4)
O5—C8—C9120.8 (5)O13—C22—C23123.1 (5)
O7—C8—C9115.7 (4)O15—C22—C23114.2 (4)
C11—C9—C10113.6 (4)C25—C23—C24113.1 (5)
C11—C9—C8119.4 (5)C25—C23—C22119.3 (5)
C10—C9—C8127.0 (4)C24—C23—C22127.6 (5)
O6—C10—O8119.7 (5)O14—C24—O16119.8 (4)
O6—C10—C9124.2 (5)O14—C24—C23124.0 (5)
O8—C10—C9116.1 (4)O16—C24—C23116.2 (4)
N2—C11—C9129.5 (4)N4—C25—C23128.4 (5)
N2—C11—H11A115.3N4—C25—H25A115.8
C9—C11—H11A115.3C23—C25—H25A115.8
O8—C12—H12C109.5O16—C26—H26C109.5
O8—C12—H12B109.5O16—C26—H26B109.5
H12C—C12—H12B109.5H26C—C26—H26B109.5
O8—C12—H12A109.5O16—C26—H26A109.5
H12C—C12—H12A109.5H26C—C26—H26A109.5
H12B—C12—H12A109.5H26B—C26—H26A109.5
O7—C13—H13C109.5O15—C27—H27C109.5
O7—C13—H13B109.5O15—C27—H27B109.5
H13C—C13—H13B109.5H27C—C27—H27B109.5
O7—C13—H13A109.5O15—C27—H27A109.5
H13C—C13—H13A109.5H27C—C27—H27A109.5
H13B—C13—H13A109.5H27B—C27—H27A109.5
N2—C14—H14C109.5N4—C28—H28C109.5
N2—C14—H14B109.5N4—C28—H28B109.5
H14C—C14—H14B109.5H28C—C28—H28B109.5
N2—C14—H14A109.5N4—C28—H28A109.5
H14C—C14—H14A109.5H28C—C28—H28A109.5
H14B—C14—H14A109.5H28B—C28—H28A109.5
C8—O7—C13114.7 (4)C22—O15—C27114.7 (4)
C10—O8—C12116.1 (4)C24—O16—C26115.3 (4)
C11—N2—C14123.4 (4)C25—N4—C28122.9 (4)
C11—N2—H2118.3C25—N4—H4118.6
C14—N2—H2118.3C28—N4—H4118.6
O1—C1—C2—C40.8 (8)O9—C15—C16—C18−5.1 (8)
O3—C1—C2—C4−178.1 (5)O11—C15—C16—C18176.0 (5)
O1—C1—C2—C3−178.7 (5)O9—C15—C16—C17175.9 (6)
O3—C1—C2—C32.4 (8)O11—C15—C16—C17−3.0 (7)
C4—C2—C3—O25.5 (8)C18—C16—C17—O102.3 (8)
C1—C2—C3—O2−175.0 (5)C15—C16—C17—O10−178.6 (5)
C4—C2—C3—O4−176.0 (5)C18—C16—C17—O12−177.3 (4)
C1—C2—C3—O43.5 (8)C15—C16—C17—O121.8 (8)
C3—C2—C4—N1−179.8 (5)C17—C16—C18—N3177.3 (5)
C1—C2—C4—N10.6 (9)C15—C16—C18—N3−1.9 (8)
O1—C1—O3—C6−1.6 (7)O9—C15—O11—C201.4 (7)
C2—C1—O3—C6177.3 (4)C16—C15—O11—C20−179.7 (4)
O2—C3—O4—C50.4 (7)O10—C17—O12—C192.6 (7)
C2—C3—O4—C5−178.1 (4)C16—C17—O12—C19−177.8 (4)
C2—C4—N1—C7178.8 (5)C16—C18—N3—C21−176.1 (5)
O5—C8—C9—C11−8.2 (7)O13—C22—C23—C251.8 (8)
O7—C8—C9—C11173.8 (5)O15—C22—C23—C25−175.5 (5)
O5—C8—C9—C10173.2 (5)O13—C22—C23—C24−178.0 (5)
O7—C8—C9—C10−4.7 (7)O15—C22—C23—C244.8 (8)
C11—C9—C10—O6−0.6 (8)C25—C23—C24—O145.0 (8)
C8—C9—C10—O6178.0 (5)C22—C23—C24—O14−175.2 (5)
C11—C9—C10—O8178.8 (4)C25—C23—C24—O16−174.8 (4)
C8—C9—C10—O8−2.6 (8)C22—C23—C24—O164.9 (8)
C10—C9—C11—N2−179.9 (5)C24—C23—C25—N4179.9 (5)
C8—C9—C11—N21.3 (8)C22—C23—C25—N40.1 (9)
O5—C8—O7—C132.5 (7)O13—C22—O15—C271.1 (7)
C9—C8—O7—C13−179.6 (4)C23—C22—O15—C27178.3 (4)
O6—C10—O8—C12−0.3 (7)O14—C24—O16—C26−0.1 (7)
C9—C10—O8—C12−179.8 (4)C23—C24—O16—C26179.8 (4)
C9—C11—N2—C14−175.4 (5)C23—C25—N4—C28−179.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.082.689 (4)127
N1—H1···O100.862.422.990 (4)125
N2—H2···O50.862.082.687 (4)127
N2—H2···O14i0.862.302.893 (5)127
N3—H3···O90.862.062.684 (4)129
N3—H3···O2i0.862.322.912 (5)126
N4—H4···O130.862.082.698 (5)128
N4—H4···O60.862.402.957 (5)123
C4—H4A···O20.932.272.683 (7)106
C6—H6A···O140.962.503.449 (7)169
C11—H11A···O60.932.292.706 (6)107
C11—H11A···O130.932.603.487 (6)159
C14—H14A···O130.962.593.507 (6)161
C18—H18A···O10.932.583.470 (6)160
C18—H18A···O100.932.272.679 (6)106
C25—H25A···O140.932.282.691 (6)106
C27—H27A···O2i0.962.593.340 (7)135
C28—H28C···O60.962.603.024 (6)107

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2088).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bolte, M. (2004). J. Appl. Cryst.37, 162–165.
  • Bouzard, D. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, p. 249. München: Springer-Verlag.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cook, A. G. (1969). Enamines: Syntheses, Structure and Reactions New York: Marcel Dekker.
  • Dyke, S. F. (1973). The Chemistry of Enamines London: Cambridge University Press.
  • Freeman, F. (1981). LONZA Reaction of Malononitrile Derivatives, p. 925. Stuttgart: Georg Thieme Verlag.
  • Gróf, M., Kožíšek, J., Milata, V. & Gatial, A. (2008). Acta Cryst. E64, o998. [PMC free article] [PubMed]
  • Kálmán, A. & Argay, Gy. (1998). Acta Cryst. B54, 877–888.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography