PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m764.
Published online 2008 May 3. doi:  10.1107/S1600536808012440
PMCID: PMC2961541

Bis(1H-benzimidazole-κN 3)bis­(4-methyl­benzoato-κ2 O,O′)copper(II)

Abstract

In the title mononuclear complex, [Cu(C8H7O2)2(C7H6N2)2], the CuII atom lies on an inversion centre and is coordinated by two O atoms of two monodentate 4-methyl­benzoate ligands and two N atoms of two benzimidazole ligands in a square-planar geometry. The mol­ecules are linked into chains running parallel to the b axis by inter­molecular N—H(...)O hydrogen bonds and by π–π stacking inter­actions [centroid–centroid distance = 3.669 (2) Å] involving centrosymmetrically related imidazole rings.

Related literature

For related literature, see: Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m764-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7O2)2(C7H6N2)2]
  • M r = 570.10
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m764-efi1.jpg
  • a = 7.2623 (2) Å
  • b = 7.6068 (1) Å
  • c = 12.9624 (2) Å
  • α = 99.687 (2)°
  • β = 96.390 (1)°
  • γ = 104.776 (3)°
  • V = 673.54 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 296 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.726, T max = 0.848
  • 8200 measured reflections
  • 2743 independent reflections
  • 2445 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.121
  • S = 0.88
  • 2743 reflections
  • 179 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012440/rz2208sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012440/rz2208Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that 4-methylbenzoic acid can act as a multidentate ligand (Song et al., 2007), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, a new Cu complex obtained by the reaction of 4-methylbenzoic acid, benzimidazole and copper chloride in alkaline aqueous solution.

As illustrated in Fig. 1, the complex molecule has an inversion symmetry where the CuII atom exists in a square planar coordination geometry, defined by two carboxyl O atoms from two monodentate 4-methylbenzate ligands and two N atoms from two benzimidazole ligands. In the crystal structure, intermolecular N—H···O hydrogen bonding interactions (Table 1) and π-π stacking interactions (centroid-centroid distance = 3.669 (2) Å) occurring between the imidazole rings of centrosymmetrically-related complexes form chains running parallel to the b axis (Fig. 2).

Experimental

A mixture of copper chloride (1 mmol), 4-methylbenzoic acid (1 mmol), benzimidazole (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor and heated to 433 K for three days. After cooling to room temperature at a rate of 10 K h-1, the crystals obtained were washed with water and dryed in air.

Refinement

All H atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 - 0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the symmetry operator (1-x, 2-y, 1-z).
Fig. 2.
Packing diagram of the title compound viewed approximately along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Cu(C8H7O2)2(C7H6N2)2]Z = 1
Mr = 570.10F000 = 295
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.2623 (2) ÅCell parameters from 3600 reflections
b = 7.6068 (1) Åθ = 1.4–28º
c = 12.9624 (2) ŵ = 0.85 mm1
α = 99.687 (2)ºT = 296 (2) K
β = 96.390 (1)ºBlock, blue
γ = 104.776 (3)º0.40 × 0.30 × 0.20 mm
V = 673.54 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer2743 independent reflections
Radiation source: fine-focus sealed tube2445 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 296(2) Kθmax = 26.5º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.726, Tmax = 0.848k = −9→9
8200 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.121  w = 1/[σ2(Fo2) + (0.1115P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.045
2743 reflectionsΔρmax = 0.31 e Å3
179 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3775 (3)0.6448 (3)0.56672 (17)0.0404 (5)
H10.45830.69880.63120.048*
C20.1775 (3)0.4328 (3)0.43989 (18)0.0397 (5)
C30.0533 (4)0.2729 (3)0.3739 (2)0.0516 (6)
H30.02770.15860.39420.062*
C4−0.0289 (4)0.2922 (4)0.2778 (2)0.0602 (7)
H4−0.11130.18820.23130.072*
C50.0079 (4)0.4657 (4)0.2474 (2)0.0553 (7)
H5−0.05170.47390.18180.066*
C60.1304 (3)0.6235 (3)0.31304 (18)0.0449 (5)
H60.15300.73800.29310.054*
C70.2189 (3)0.6062 (3)0.40969 (17)0.0355 (4)
C150.5949 (3)0.8828 (3)0.31242 (16)0.0400 (5)
C160.5876 (4)0.8343 (3)0.19460 (17)0.0404 (5)
C170.4260 (4)0.8288 (3)0.12438 (18)0.0462 (5)
H170.32050.85740.15030.055*
C180.4215 (4)0.7808 (4)0.01597 (18)0.0553 (7)
H180.31170.7766−0.02990.066*
C190.5742 (5)0.7394 (3)−0.02547 (19)0.0548 (7)
C200.7351 (5)0.7454 (4)0.0439 (2)0.0631 (8)
H200.84050.71790.01720.076*
C210.7426 (4)0.7920 (4)0.1535 (2)0.0547 (6)
H210.85220.79470.19900.066*
C220.5672 (6)0.6885 (4)−0.1443 (2)0.0736 (9)
H22A0.44080.6111−0.17680.110*
H22B0.66100.6226−0.15890.110*
H22C0.59550.7996−0.17250.110*
Cu10.50001.00000.50000.03466 (16)
N10.3479 (3)0.7375 (2)0.49250 (13)0.0363 (4)
N20.2793 (3)0.4642 (3)0.54000 (15)0.0423 (4)
H20.28000.38290.57870.051*
O10.4718 (2)0.9625 (2)0.34485 (11)0.0403 (4)
O20.7185 (3)0.8455 (2)0.37312 (13)0.0503 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0484 (12)0.0394 (11)0.0344 (10)0.0100 (9)0.0095 (9)0.0123 (9)
C20.0398 (11)0.0345 (11)0.0472 (12)0.0092 (9)0.0146 (9)0.0120 (9)
C30.0490 (13)0.0304 (11)0.0703 (17)0.0020 (10)0.0139 (12)0.0077 (11)
C40.0503 (14)0.0473 (14)0.0661 (17)−0.0060 (12)0.0027 (12)0.0001 (12)
C50.0482 (13)0.0559 (15)0.0496 (14)0.0006 (12)−0.0038 (10)0.0070 (11)
C60.0436 (12)0.0433 (12)0.0450 (12)0.0051 (10)0.0048 (9)0.0134 (10)
C70.0347 (10)0.0322 (10)0.0387 (10)0.0064 (8)0.0083 (8)0.0077 (8)
C150.0504 (12)0.0264 (10)0.0361 (11)−0.0028 (9)0.0011 (9)0.0122 (8)
C160.0547 (13)0.0270 (10)0.0367 (11)0.0063 (9)0.0049 (9)0.0081 (8)
C170.0549 (13)0.0463 (13)0.0353 (11)0.0118 (11)0.0060 (9)0.0068 (9)
C180.0672 (16)0.0571 (14)0.0345 (11)0.0113 (13)0.0016 (11)0.0039 (11)
C190.0819 (19)0.0394 (12)0.0422 (13)0.0155 (12)0.0152 (12)0.0046 (10)
C200.079 (2)0.0590 (17)0.0591 (16)0.0291 (15)0.0263 (15)0.0094 (13)
C210.0649 (16)0.0508 (14)0.0498 (14)0.0200 (13)0.0067 (12)0.0100 (11)
C220.114 (3)0.0659 (18)0.0417 (14)0.0259 (18)0.0221 (15)0.0049 (13)
Cu10.0445 (2)0.0294 (2)0.0273 (2)0.00483 (15)0.00285 (14)0.00858 (14)
N10.0443 (10)0.0329 (9)0.0307 (8)0.0074 (8)0.0053 (7)0.0091 (7)
N20.0533 (11)0.0344 (9)0.0461 (10)0.0143 (8)0.0149 (8)0.0197 (8)
O10.0508 (9)0.0359 (8)0.0310 (7)0.0067 (7)0.0045 (6)0.0076 (6)
O20.0587 (10)0.0457 (9)0.0455 (9)0.0101 (8)−0.0018 (7)0.0202 (7)

Geometric parameters (Å, °)

C1—N11.315 (3)C16—C171.390 (3)
C1—N21.342 (3)C17—C181.386 (3)
C1—H10.9300C17—H170.9300
C2—N21.371 (3)C18—C191.368 (4)
C2—C31.394 (3)C18—H180.9300
C2—C71.407 (3)C19—C201.379 (4)
C3—C41.368 (4)C19—C221.516 (3)
C3—H30.9300C20—C211.396 (4)
C4—C51.410 (4)C20—H200.9300
C4—H40.9300C21—H210.9300
C5—C61.378 (3)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.386 (3)C22—H22C0.9600
C6—H60.9300Cu1—O1i1.9630 (14)
C7—N11.402 (3)Cu1—O11.9630 (14)
C15—O21.246 (3)Cu1—N12.0007 (16)
C15—O11.272 (3)Cu1—N1i2.0007 (16)
C15—C161.501 (3)N2—H20.8600
C16—C211.384 (4)
N1—C1—N2113.20 (19)C19—C18—H18119.1
N1—C1—H1123.4C17—C18—H18119.1
N2—C1—H1123.4C18—C19—C20118.2 (2)
N2—C2—C3132.2 (2)C18—C19—C22121.0 (3)
N2—C2—C7105.66 (19)C20—C19—C22120.8 (3)
C3—C2—C7122.2 (2)C19—C20—C21121.2 (3)
C4—C3—C2116.8 (2)C19—C20—H20119.4
C4—C3—H3121.6C21—C20—H20119.4
C2—C3—H3121.6C16—C21—C20120.2 (3)
C3—C4—C5121.7 (2)C16—C21—H21119.9
C3—C4—H4119.2C20—C21—H21119.9
C5—C4—H4119.2C19—C22—H22A109.5
C6—C5—C4121.3 (2)C19—C22—H22B109.5
C6—C5—H5119.3H22A—C22—H22B109.5
C4—C5—H5119.3C19—C22—H22C109.5
C5—C6—C7117.9 (2)H22A—C22—H22C109.5
C5—C6—H6121.0H22B—C22—H22C109.5
C7—C6—H6121.0O1i—Cu1—O1180.00 (10)
C6—C7—N1131.56 (19)O1i—Cu1—N188.20 (6)
C6—C7—C2120.1 (2)O1—Cu1—N191.80 (6)
N1—C7—C2108.32 (19)O1i—Cu1—N1i91.80 (6)
O2—C15—O1123.3 (2)O1—Cu1—N1i88.20 (6)
O2—C15—C16119.9 (2)N1—Cu1—N1i180.00 (11)
O1—C15—C16116.81 (19)C1—N1—C7105.17 (17)
C21—C16—C17118.4 (2)C1—N1—Cu1122.68 (15)
C21—C16—C15120.2 (2)C7—N1—Cu1131.45 (14)
C17—C16—C15121.3 (2)C1—N2—C2107.64 (18)
C18—C17—C16120.3 (2)C1—N2—H2126.2
C18—C17—H17119.9C2—N2—H2126.2
C16—C17—H17119.9C15—O1—Cu1109.52 (13)
C19—C18—C17121.8 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.952.780 (2)163

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2208).

References

  • Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography