PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m754.
Published online 2008 May 3. doi:  10.1107/S1600536808008301
PMCID: PMC2961537

Dichloridobis[(1S,1S′,2R,2R′)-(+)-1,1′-di-tert-butyl-2,2′-diphospho­lane-κ2 P,P′]ruthenium(II)

Abstract

In the title compound, [RuCl2(C16H32P2)2], the RuII ion is situated on a twofold rotation axis, so the asymmetric unit contains one half-mol­ecule. The slightly distorted octa­hedral environment of the Ru center is formed by four P atoms [Ru—P = 2.4417 (6) and 2.4544 (6) Å] from two different (1S,1S′,2R,2R′)-TangPhos ligands [(1S,1S′,2R,2R′)-TangPhos = (1S,1S′,2R,2R′)-(+)-1,1′-di-tert-butyl-2,2′-diphospho­lane] and two Cl atoms [Ru—Cl = 2.4267 (5) Å].

Related literature

For related literature, see: Ikariya et al. (1985 [triangle]); James & Fogg (1993 [triangle]); Stoop et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m754-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C16H32P2)2]
  • M r = 744.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m754-efi2.jpg
  • a = 11.8640 (14) Å
  • b = 20.669 (3) Å
  • c = 14.2274 (17) Å
  • V = 3488.8 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 108 (2) K
  • 0.24 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.863, T max = 0.921
  • 11542 measured reflections
  • 4164 independent reflections
  • 4018 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.057
  • S = 1.06
  • 4164 reflections
  • 183 parameters
  • H-atom parameters not refined
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1750 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008301/cv2390sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008301/cv2390Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20702039).

supplementary crystallographic information

Comment

Recently, some chiral diphosphino ruthenium complexes have been synthesized and used as catalysts for the asymmetric reactions (Stoop et al., 1999; James et al., 1993). Herein, we report the synthesis and crystal structure of the title compound - the ruthenium(II) complex containing the chiral TangPhos ligand.

As shown in Fig. 1, the crystals of the title complex contain discrete [RuCl2(TangPhos)2] units with the metal center in a slightly distorted octahedral environment. The trans-axial positions of RuII environment are occupied by Cl1 and Cl1i atoms, and the equatorial positions are occupied by P1, P2, P1i, P2i atoms, respectively [symmetry code: (i) -x, y, -z + 1/2], from two different TangPhos ligands, resulting in two chelate rings, which assume a half-chair conformation with the tert-butyl in the less hindered equatorial positions. Similar conformations were found in previously reported related structures (Stoop et al., 1999; Ikariya et al., 1985).

Experimental

To a solution of [RuCl2(PPh)3] (96 mg, 0.1 mmol) in 2 ml of deoxygenated CH2Cl2 was added dropwise a solution of (1S,1S',2R,2R')-TangPhos, (56 mg, 0.2 mmol) in CH2Cl2 (1 ml). The resulting mixture was stirred at ambient temperature for 6 h. Deoxygenated ether (12 ml) was added into the vigorously stirring solution and kept for 6 h at room temperature. The resulting light brown precipitate was filtered, washed with ether (3 times with 10 ml), and dried under vacuum. Yield: 45 mg (56%). Crystals suitable for X-ray diffraction were obtained by diffusion of hexane into a CD2Cl2 solution of the above compound at room temperature.

Refinement

All H atoms were positioned geometrically (C—H 0.98–1.00 Å), and treated as riding, with Uiso(H) = 1.2–1.5Ueq (C).

Figures

Fig. 1.
View of the title compound with the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (i) -x, y, -z + 1/2]. H atoms are omitted for clarity.

Crystal data

[RuCl2(C16H32P2)2]F000 = 1576
Mr = 744.72Dx = 1.418 Mg m3
Orthorhombic, C2221Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 5992 reflections
a = 11.8640 (14) Åθ = 2.4–28.2º
b = 20.669 (3) ŵ = 0.81 mm1
c = 14.2274 (17) ÅT = 108 (2) K
V = 3488.8 (8) Å3Brick, orange
Z = 40.24 × 0.15 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer4164 independent reflections
Radiation source: fine-focus sealed tube4018 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 108(2) Kθmax = 28.3º
phi and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −14→15
Tmin = 0.863, Tmax = 0.921k = −17→27
11542 measured reflectionsl = −18→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.024  w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2939P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.003
S = 1.06Δρmax = 0.83 e Å3
4164 reflectionsΔρmin = −0.29 e Å3
183 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1750 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.02414 (19)0.16346 (11)−0.00952 (15)0.0256 (5)
H1A−0.00590.1290−0.04970.038*
H1B0.08060.1883−0.04450.038*
H1C−0.03730.19220.00980.038*
C2−0.0038 (3)0.08613 (11)0.12059 (16)0.0353 (6)
H2A−0.07400.10860.13640.053*
H2B0.02910.06770.17780.053*
H2C−0.01980.05140.07560.053*
C30.1820 (2)0.09489 (11)0.04344 (16)0.0257 (5)
H3A0.21770.07370.09730.039*
H3B0.23610.12430.01360.039*
H3C0.15800.0621−0.00210.039*
C40.07852 (18)0.13369 (11)0.07717 (15)0.0188 (4)
C50.21860 (15)0.15194 (10)0.24348 (17)0.0185 (4)
H5A0.20970.16490.31000.022*
H5B0.20310.10500.23840.022*
C60.33823 (17)0.16652 (12)0.21003 (18)0.0262 (5)
H6A0.39270.16160.26220.031*
H6B0.36010.13690.15840.031*
C70.33514 (17)0.23639 (12)0.17560 (17)0.0261 (5)
H7A0.40660.24740.14340.031*
H7B0.32500.26630.22930.031*
C80.23545 (18)0.24229 (10)0.10707 (15)0.0179 (4)
H80.25490.21760.04890.021*
C90.20454 (18)0.31083 (11)0.07802 (15)0.0185 (4)
H90.27600.33580.06950.022*
C100.13653 (19)0.31551 (11)−0.01378 (14)0.0220 (5)
H10A0.18390.3027−0.06800.026*
H10B0.07020.2865−0.01120.026*
C110.09906 (19)0.38550 (11)−0.02376 (15)0.0237 (5)
H11A0.04650.3904−0.07730.028*
H11B0.16470.4142−0.03380.028*
C120.04012 (19)0.40157 (10)0.06914 (15)0.0203 (5)
H12A−0.04020.38870.06630.024*
H12B0.04420.44860.08170.024*
C130.2153 (2)0.42001 (11)0.21194 (17)0.0261 (5)
C140.3123 (2)0.39022 (14)0.26745 (19)0.0414 (7)
H14A0.35820.42470.29510.062*
H14B0.35900.36400.22530.062*
H14C0.28190.36280.31760.062*
C150.2678 (2)0.46048 (11)0.13264 (17)0.0291 (5)
H15A0.20780.48060.09540.044*
H15B0.31340.43240.09210.044*
H15C0.31580.49430.15980.044*
C160.1502 (3)0.46594 (13)0.2754 (2)0.0505 (9)
H16A0.11800.44170.32810.076*
H16B0.08950.48640.23940.076*
H16C0.20130.49930.29950.076*
Cl1−0.13351 (4)0.27771 (3)0.12078 (3)0.01700 (10)
P10.11419 (5)0.35562 (3)0.16379 (4)0.01581 (11)
P20.11916 (4)0.19819 (3)0.16823 (4)0.01347 (11)
Ru10.00000.277275 (10)0.25000.01108 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0294 (13)0.0265 (11)0.0207 (11)0.0048 (10)−0.0060 (9)−0.0074 (9)
C20.0464 (14)0.0316 (12)0.0279 (12)−0.0175 (14)0.0162 (14)−0.0125 (10)
C30.0352 (13)0.0209 (11)0.0209 (11)0.0099 (10)0.0033 (10)−0.0011 (9)
C40.0241 (11)0.0182 (10)0.0142 (10)0.0018 (9)0.0029 (8)−0.0020 (8)
C50.0201 (10)0.0212 (9)0.0141 (9)0.0048 (8)0.0021 (9)0.0025 (10)
C60.0168 (11)0.0359 (14)0.0260 (11)0.0088 (10)0.0036 (9)0.0107 (10)
C70.0132 (10)0.0342 (15)0.0310 (12)−0.0006 (9)0.0012 (9)0.0117 (10)
C80.0166 (10)0.0211 (11)0.0159 (9)0.0012 (8)0.0046 (8)0.0031 (8)
C90.0181 (10)0.0208 (11)0.0166 (10)0.0011 (8)0.0045 (8)0.0041 (9)
C100.0285 (12)0.0242 (12)0.0133 (10)0.0052 (10)0.0058 (9)0.0023 (8)
C110.0304 (13)0.0240 (12)0.0166 (11)0.0015 (10)0.0039 (9)0.0061 (9)
C120.0247 (11)0.0162 (10)0.0199 (11)0.0009 (9)0.0015 (8)0.0037 (9)
C130.0326 (13)0.0224 (12)0.0234 (11)−0.0126 (10)0.0024 (10)−0.0004 (10)
C140.0485 (16)0.0439 (15)0.0317 (17)−0.0285 (13)−0.0166 (12)0.0120 (12)
C150.0348 (13)0.0212 (11)0.0315 (13)−0.0111 (11)0.0056 (11)0.0024 (10)
C160.0582 (19)0.0429 (17)0.050 (2)−0.0304 (15)0.0255 (15)−0.0289 (14)
Cl10.0168 (2)0.0205 (2)0.0137 (2)0.0003 (2)−0.00355 (16)0.0000 (2)
P10.0188 (3)0.0144 (3)0.0143 (3)−0.0034 (2)0.0013 (2)0.0013 (2)
P20.0146 (3)0.0147 (2)0.0111 (2)0.0011 (2)0.0020 (2)0.0013 (2)
Ru10.01224 (10)0.01165 (10)0.00935 (9)0.0000.00015 (8)0.000

Geometric parameters (Å, °)

C1—C41.522 (3)C10—C111.520 (3)
C1—H1A0.9800C10—H10A0.9900
C1—H1B0.9800C10—H10B0.9900
C1—H1C0.9800C11—C121.532 (3)
C2—C41.517 (3)C11—H11A0.9900
C2—H2A0.9800C11—H11B0.9900
C2—H2B0.9800C12—P11.868 (2)
C2—H2C0.9800C12—H12A0.9900
C3—C41.543 (3)C12—H12B0.9900
C3—H3A0.9800C13—C161.520 (4)
C3—H3B0.9800C13—C141.525 (3)
C3—H3C0.9800C13—C151.537 (3)
C4—P21.920 (2)C13—P11.918 (2)
C5—C61.527 (3)C14—H14A0.9800
C5—P21.858 (2)C14—H14B0.9800
C5—H5A0.9900C14—H14C0.9800
C5—H5B0.9900C15—H15A0.9800
C6—C71.525 (3)C15—H15B0.9800
C6—H6A0.9900C15—H15C0.9800
C6—H6B0.9900C16—H16A0.9800
C7—C81.538 (3)C16—H16B0.9800
C7—H7A0.9900C16—H16C0.9800
C7—H7B0.9900Cl1—Ru12.4267 (5)
C8—C91.521 (3)P1—Ru12.4417 (6)
C8—P21.869 (2)P2—Ru12.4544 (6)
C8—H81.0000Ru1—Cl1i2.4267 (5)
C9—C101.538 (3)Ru1—P1i2.4417 (6)
C9—P11.870 (2)Ru1—P2i2.4544 (6)
C9—H91.0000
C4—C1—H1A109.5C12—C11—H11A110.7
C4—C1—H1B109.5C10—C11—H11B110.7
H1A—C1—H1B109.5C12—C11—H11B110.7
C4—C1—H1C109.5H11A—C11—H11B108.8
H1A—C1—H1C109.5C11—C12—P1107.29 (15)
H1B—C1—H1C109.5C11—C12—H12A110.3
C4—C2—H2A109.5P1—C12—H12A110.3
C4—C2—H2B109.5C11—C12—H12B110.3
H2A—C2—H2B109.5P1—C12—H12B110.3
C4—C2—H2C109.5H12A—C12—H12B108.5
H2A—C2—H2C109.5C16—C13—C14109.1 (2)
H2B—C2—H2C109.5C16—C13—C15107.6 (2)
C4—C3—H3A109.5C14—C13—C15107.1 (2)
C4—C3—H3B109.5C16—C13—P1109.12 (17)
H3A—C3—H3B109.5C14—C13—P1112.12 (17)
C4—C3—H3C109.5C15—C13—P1111.66 (16)
H3A—C3—H3C109.5C13—C14—H14A109.5
H3B—C3—H3C109.5C13—C14—H14B109.5
C2—C4—C1108.6 (2)H14A—C14—H14B109.5
C2—C4—C3107.60 (19)C13—C14—H14C109.5
C1—C4—C3107.18 (17)H14A—C14—H14C109.5
C2—C4—P2109.67 (14)H14B—C14—H14C109.5
C1—C4—P2111.87 (15)C13—C15—H15A109.5
C3—C4—P2111.76 (15)C13—C15—H15B109.5
C6—C5—P2108.00 (15)H15A—C15—H15B109.5
C6—C5—H5A110.1C13—C15—H15C109.5
P2—C5—H5A110.1H15A—C15—H15C109.5
C6—C5—H5B110.1H15B—C15—H15C109.5
P2—C5—H5B110.1C13—C16—H16A109.5
H5A—C5—H5B108.4C13—C16—H16B109.5
C7—C6—C5105.35 (17)H16A—C16—H16B109.5
C7—C6—H6A110.7C13—C16—H16C109.5
C5—C6—H6A110.7H16A—C16—H16C109.5
C7—C6—H6B110.7H16B—C16—H16C109.5
C5—C6—H6B110.7C12—P1—C992.92 (10)
H6A—C6—H6B108.8C12—P1—C13101.48 (10)
C6—C7—C8107.28 (19)C9—P1—C13102.59 (10)
C6—C7—H7A110.3C12—P1—Ru1116.00 (7)
C8—C7—H7A110.3C9—P1—Ru1108.52 (7)
C6—C7—H7B110.3C13—P1—Ru1128.89 (8)
C8—C7—H7B110.3C5—P2—C892.89 (9)
H7A—C7—H7B108.5C5—P2—C4101.01 (10)
C9—C8—C7115.57 (18)C8—P2—C4102.11 (9)
C9—C8—P2113.76 (15)C5—P2—Ru1115.80 (8)
C7—C8—P2103.53 (14)C8—P2—Ru1108.73 (7)
C9—C8—H8107.9C4—P2—Ru1129.60 (7)
C7—C8—H8107.9Cl1i—Ru1—Cl1179.58 (3)
P2—C8—H8107.9Cl1i—Ru1—P190.913 (19)
C8—C9—C10114.56 (18)Cl1—Ru1—P188.806 (19)
C8—C9—P1114.98 (15)Cl1i—Ru1—P1i88.806 (19)
C10—C9—P1102.85 (14)Cl1—Ru1—P1i90.913 (19)
C8—C9—H9108.0P1—Ru1—P1i96.91 (3)
C10—C9—H9108.0Cl1i—Ru1—P2i91.107 (19)
P1—C9—H9108.0Cl1—Ru1—P2i89.175 (19)
C11—C10—C9107.00 (18)P1—Ru1—P2i177.969 (19)
C11—C10—H10A110.3P1i—Ru1—P2i83.341 (18)
C9—C10—H10A110.3Cl1i—Ru1—P289.175 (19)
C11—C10—H10B110.3Cl1—Ru1—P291.107 (19)
C9—C10—H10B110.3P1—Ru1—P283.341 (18)
H10A—C10—H10B108.6P1i—Ru1—P2177.969 (19)
C10—C11—C12105.02 (17)P2i—Ru1—P296.48 (3)
C10—C11—H11A110.7
P2—C5—C6—C733.0 (2)C9—C8—P2—C4110.84 (16)
C5—C6—C7—C8−50.9 (2)C7—C8—P2—C4−122.93 (15)
C6—C7—C8—C9169.48 (18)C9—C8—P2—Ru1−28.74 (16)
C6—C7—C8—P244.4 (2)C7—C8—P2—Ru197.50 (14)
C7—C8—C9—C10159.29 (18)C2—C4—P2—C576.02 (19)
P2—C8—C9—C10−81.1 (2)C1—C4—P2—C5−163.42 (15)
C7—C8—C9—P1−81.9 (2)C3—C4—P2—C5−43.22 (17)
P2—C8—C9—P137.76 (19)C2—C4—P2—C8171.43 (17)
C8—C9—C10—C11171.88 (18)C1—C4—P2—C8−68.01 (17)
P1—C9—C10—C1146.39 (19)C3—C4—P2—C852.19 (17)
C9—C10—C11—C12−53.0 (2)C2—C4—P2—Ru1−61.4 (2)
C10—C11—C12—P133.8 (2)C1—C4—P2—Ru159.14 (18)
C11—C12—P1—C9−6.50 (16)C3—C4—P2—Ru1179.34 (11)
C11—C12—P1—C1396.98 (16)C12—P1—Ru1—Cl1i−160.02 (8)
C11—C12—P1—Ru1−118.75 (14)C9—P1—Ru1—Cl1i97.09 (7)
C8—C9—P1—C12−147.28 (16)C13—P1—Ru1—Cl1i−27.34 (10)
C10—C9—P1—C12−22.07 (15)C12—P1—Ru1—Cl119.66 (8)
C8—C9—P1—C13110.27 (16)C9—P1—Ru1—Cl1−83.23 (7)
C10—C9—P1—C13−124.52 (15)C13—P1—Ru1—Cl1152.34 (10)
C8—C9—P1—Ru1−28.60 (16)C12—P1—Ru1—P1i−71.11 (8)
C10—C9—P1—Ru196.61 (13)C9—P1—Ru1—P1i−174.00 (8)
C16—C13—P1—C1277.9 (2)C13—P1—Ru1—P1i61.56 (10)
C14—C13—P1—C12−161.05 (17)C12—P1—Ru1—P2110.92 (8)
C15—C13—P1—C12−40.84 (19)C9—P1—Ru1—P28.03 (7)
C16—C13—P1—C9173.58 (18)C13—P1—Ru1—P2−116.41 (10)
C14—C13—P1—C9−65.40 (19)C5—P2—Ru1—Cl1i20.56 (7)
C15—C13—P1—C954.81 (19)C8—P2—Ru1—Cl1i−82.33 (7)
C16—C13—P1—Ru1−59.7 (2)C4—P2—Ru1—Cl1i153.05 (9)
C14—C13—P1—Ru161.3 (2)C5—P2—Ru1—Cl1−159.76 (7)
C15—C13—P1—Ru1−178.44 (13)C8—P2—Ru1—Cl197.35 (7)
C6—C5—P2—C8−6.72 (17)C4—P2—Ru1—Cl1−27.27 (9)
C6—C5—P2—C496.21 (17)C8—P2—Ru1—P18.68 (7)
C6—C5—P2—Ru1−119.15 (15)C5—P2—Ru1—P2i−70.46 (7)
C9—C8—P2—C5−147.25 (16)C8—P2—Ru1—P2i−173.36 (8)
C7—C8—P2—C5−21.02 (16)C4—P2—Ru1—P2i62.03 (9)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2390).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ikariya, T., Ishii, Y., Kawano, H., Arai, T., Saburi, M., Yoshikawa, S. & Akutagawa, S. (1985). J. Chem. Soc. Chem. Commun. pp. 922–924.
  • James, B. R. & Fogg, D. E. (1993). J. Organomet. Chem.462, c21–c24.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoop, R. M., Bauer, C., Setz, P., Wörle, M., Wong, T. Y. H. & Mezzetti, A. (1999). Organometallics, 18, 5691–5700.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography