PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m761.
Published online 2008 May 3. doi:  10.1107/S160053680801012X
PMCID: PMC2961536

(5,5′-Dicarboxy­biphenyl-2,2′-dicarboxyl­ato-κ2 O 2,O 2′)bis­(1,10-phenanthroline-κ2 N,N′)cobalt(II) dihydrate

Abstract

In the title compound, [Co(C16H8O8)(C12H8N2)2]·2H2O, the Co atom located on a twofold rotation axis. It is six-coordinated by two O atoms from one 5,5′-dicarboxy­biphenyl-2,2′-dicarboxyl­ate anion and four N atoms from two 1,10-phenanthroline mol­ecules in a distorted octa­hedral environment. The crystal packing is stabilized by O—H(...)O hydrogen bonds.

Related literature

For related literature, see: Zang et al. (2006 [triangle]); Che et al. (2006 [triangle]); Lehn (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m761-scheme1.jpg

Experimental

Crystal data

  • [Co(C16H8O8)(C12H8N2)2]·2H2O
  • M r = 783.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m761-efi1.jpg
  • a = 16.9272 (14) Å
  • b = 9.4514 (8) Å
  • c = 22.0458 (19) Å
  • β = 96.056 (1)°
  • V = 3507.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 293 (2) K
  • 0.28 × 0.25 × 0.23 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.852, T max = 0.880
  • 9540 measured reflections
  • 3447 independent reflections
  • 2705 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.111
  • S = 1.05
  • 3447 reflections
  • 255 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801012X/bt2694sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801012X/bt2694Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Changchun Normal University for supporting this work.

supplementary crystallographic information

Comment

Aromatic polycarboxylate ligands have been extensively employed in the preparation of metal-organic coordination complexes due to their ability to form networks and due to their interesting properties (Lehn, 1990; Che et al., 2006). We selected biphenyl-2,5,2',5'-tetracarboxylic acid (H4BPTC) as a bridging ligand, 1,10-phenanthroline as a neutral ligand, and CoII as a metal center, in order to generate a new compound, [Co(H2BPTC)(Phen)2].2H2O, (I), which is reported here.

In compound (I), each CoII atom is six-coordinated by two O atoms from one H2BPTC anion and four N atoms from two 1,10-phenanthroline molecules in a distorted octahedral environment (Fig. 1). The bond lengths are all within the normal ranges (Zang et al., 2006). The crystal packing is stabilized by O—H···O hydrogen bonds between carboxylate groups and water molecules.

Experimental

A mixture of CoCl2.2H2O (0.1 mmol), biphenyl-2,5,2',5'-tetracarboxylic acid (0.2 mmol), 1,10-phenanthroline (0.2 mmol) and H2O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 298 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Then, pink crystals of were obtained.

Refinement

The water H-atoms were located from a difference Fourier map, and were refined with distance restraints of O–H = 0.90 Å and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, y, 0.5 - z.

Crystal data

[Co(C16H8O8)(C12H8N2)2]·2H2OF000 = 1612
Mr = 783.59Dx = 1.484 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3447 reflections
a = 16.9272 (14) Åθ = 2.0–26.0º
b = 9.4514 (8) ŵ = 0.56 mm1
c = 22.0458 (19) ÅT = 293 (2) K
β = 96.0560 (10)ºBlock, pink
V = 3507.3 (5) Å30.28 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer3447 independent reflections
Radiation source: fine-focus sealed tube2705 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −20→20
Tmin = 0.852, Tmax = 0.880k = −11→10
9540 measured reflectionsl = −27→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0514P)2 + 0.7022P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3447 reflectionsΔρmax = 0.43 e Å3
255 parametersΔρmin = −0.21 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.02180 (12)0.3926 (2)0.17029 (10)0.0195 (5)
C2−0.01759 (12)0.4503 (2)0.21744 (10)0.0176 (5)
C3−0.08951 (13)0.5192 (2)0.20193 (10)0.0210 (5)
H3−0.11700.55610.23270.025*
C4−0.12130 (13)0.5340 (3)0.14147 (11)0.0240 (5)
C5−0.07984 (13)0.4819 (3)0.09534 (11)0.0281 (6)
H5−0.09990.49350.05470.034*
C6−0.00843 (13)0.4127 (3)0.11002 (11)0.0265 (6)
H60.01970.37910.07900.032*
C70.09258 (13)0.2983 (2)0.18419 (11)0.0227 (5)
C8−0.19930 (14)0.6078 (3)0.12529 (11)0.0305 (6)
C90.12655 (16)0.1382 (3)0.36037 (13)0.0419 (7)
H90.14620.20700.33580.050*
C100.16476 (18)0.1183 (4)0.41931 (15)0.0551 (9)
H100.20810.17400.43350.066*
C110.13745 (19)0.0158 (4)0.45565 (15)0.0579 (10)
H110.1632−0.00080.49440.069*
C120.07085 (19)−0.0637 (3)0.43443 (14)0.0463 (8)
C130.03635 (17)−0.0368 (3)0.37519 (13)0.0369 (7)
C14−0.03385 (18)−0.1126 (3)0.35129 (13)0.0393 (7)
C15−0.0675 (2)−0.2122 (3)0.38854 (15)0.0500 (8)
C16−0.0295 (3)−0.2393 (4)0.44813 (17)0.0651 (11)
H16−0.0508−0.30720.47230.078*
C170.0364 (2)−0.1692 (4)0.47042 (16)0.0637 (10)
H170.0598−0.18930.50950.076*
C18−0.1378 (2)−0.2783 (3)0.36436 (17)0.0612 (10)
H18−0.1619−0.34550.38710.073*
C19−0.1707 (2)−0.2438 (3)0.30749 (17)0.0573 (10)
H19−0.2184−0.28490.29150.069*
C20−0.13227 (18)−0.1458 (3)0.27306 (15)0.0472 (8)
H20−0.1551−0.12390.23390.057*
N10.06377 (12)0.0635 (2)0.33797 (10)0.0342 (5)
N2−0.06511 (14)−0.0830 (2)0.29367 (11)0.0369 (6)
O10.09051 (9)0.20921 (16)0.22641 (7)0.0257 (4)
O20.14953 (10)0.3116 (2)0.15270 (8)0.0443 (5)
O1W0.16597 (12)0.4484 (2)0.04153 (9)0.0432 (5)
O3−0.22748 (11)0.6294 (2)0.07347 (8)0.0507 (6)
O4−0.23287 (10)0.6461 (2)0.17334 (8)0.0475 (6)
H4−0.27510.68580.16260.071*
Co10.00000.07672 (5)0.25000.02804 (17)
H1A0.1647 (16)0.398 (3)0.0755 (8)0.042*
H1B0.1857 (15)0.388 (2)0.0163 (10)0.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0143 (10)0.0227 (13)0.0218 (12)0.0028 (9)0.0030 (9)0.0004 (10)
C20.0153 (11)0.0177 (12)0.0199 (12)−0.0020 (9)0.0029 (9)0.0005 (9)
C30.0181 (11)0.0248 (13)0.0203 (13)0.0026 (9)0.0033 (10)−0.0037 (10)
C40.0193 (12)0.0288 (14)0.0238 (13)0.0063 (10)0.0016 (10)0.0001 (10)
C50.0236 (12)0.0418 (16)0.0180 (13)0.0087 (11)−0.0021 (10)0.0010 (11)
C60.0245 (12)0.0360 (15)0.0196 (13)0.0085 (11)0.0058 (10)−0.0030 (11)
C70.0198 (12)0.0260 (13)0.0222 (13)0.0052 (10)0.0019 (10)−0.0028 (10)
C80.0227 (12)0.0443 (17)0.0242 (14)0.0110 (11)0.0020 (11)0.0005 (12)
C90.0319 (15)0.0500 (18)0.0444 (18)0.0084 (14)0.0072 (13)0.0125 (14)
C100.0368 (16)0.079 (3)0.048 (2)0.0138 (16)−0.0001 (15)0.0097 (18)
C110.051 (2)0.081 (3)0.0416 (19)0.0279 (19)0.0070 (16)0.0244 (18)
C120.0533 (19)0.0457 (19)0.0425 (18)0.0193 (15)0.0168 (15)0.0117 (15)
C130.0483 (17)0.0286 (15)0.0371 (17)0.0160 (13)0.0195 (14)0.0069 (12)
C140.0587 (19)0.0238 (15)0.0404 (17)0.0087 (13)0.0283 (15)0.0025 (12)
C150.079 (2)0.0265 (16)0.051 (2)0.0043 (16)0.0385 (18)0.0022 (14)
C160.106 (3)0.038 (2)0.060 (2)0.007 (2)0.048 (2)0.0151 (17)
C170.092 (3)0.055 (2)0.049 (2)0.026 (2)0.029 (2)0.0256 (18)
C180.094 (3)0.0323 (18)0.067 (3)−0.0128 (18)0.056 (2)−0.0067 (16)
C190.074 (2)0.0376 (18)0.068 (2)−0.0217 (17)0.043 (2)−0.0196 (17)
C200.060 (2)0.0317 (16)0.054 (2)−0.0110 (15)0.0279 (16)−0.0119 (14)
N10.0352 (12)0.0323 (13)0.0367 (13)0.0091 (10)0.0119 (10)0.0061 (10)
N20.0485 (14)0.0236 (12)0.0426 (14)−0.0036 (11)0.0238 (12)−0.0048 (10)
O10.0231 (9)0.0249 (9)0.0294 (10)0.0044 (7)0.0038 (7)0.0069 (8)
O20.0297 (10)0.0664 (14)0.0402 (12)0.0286 (9)0.0196 (9)0.0277 (10)
O1W0.0472 (12)0.0570 (14)0.0262 (11)0.0127 (10)0.0079 (9)0.0085 (9)
O30.0378 (11)0.0889 (17)0.0242 (11)0.0349 (11)−0.0027 (9)0.0028 (10)
O40.0356 (11)0.0810 (15)0.0264 (10)0.0384 (10)0.0057 (9)0.0074 (10)
Co10.0308 (3)0.0225 (3)0.0323 (3)0.0000.0103 (2)0.000

Geometric parameters (Å, °)

C1—C61.385 (3)C13—N11.367 (3)
C1—C21.403 (3)C13—C141.439 (4)
C1—C71.499 (3)C14—N21.353 (4)
C2—C31.391 (3)C14—C151.408 (4)
C2—C2i1.495 (4)C15—C181.399 (5)
C3—C41.391 (3)C15—C161.424 (5)
C3—H30.9300C16—C171.345 (5)
C4—C51.385 (3)C16—H160.9300
C4—C81.503 (3)C17—H170.9300
C5—C61.382 (3)C18—C191.357 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.401 (4)
C7—O21.252 (3)C19—H190.9300
C7—O11.258 (3)C20—N21.320 (4)
C8—O31.208 (3)C20—H200.9300
C8—O41.305 (3)N1—Co12.121 (2)
C9—N11.327 (3)N2—Co12.155 (2)
C9—C101.402 (4)O1—Co12.0865 (16)
C9—H90.9300O1W—H1A0.890 (10)
C10—C111.368 (4)O1W—H1B0.889 (10)
C10—H100.9300O4—H40.8200
C11—C121.394 (5)Co1—O1i2.0865 (16)
C11—H110.9300Co1—N1i2.121 (2)
C12—C131.396 (4)Co1—N2i2.155 (2)
C12—C171.437 (4)
C6—C1—C2120.1 (2)C18—C15—C14117.2 (3)
C6—C1—C7118.9 (2)C18—C15—C16123.7 (3)
C2—C1—C7120.8 (2)C14—C15—C16119.2 (3)
C3—C2—C1118.1 (2)C17—C16—C15121.7 (3)
C3—C2—C2i119.1 (2)C17—C16—H16119.2
C1—C2—C2i122.6 (2)C15—C16—H16119.2
C2—C3—C4121.5 (2)C16—C17—C12120.7 (3)
C2—C3—H3119.2C16—C17—H17119.7
C4—C3—H3119.2C12—C17—H17119.7
C5—C4—C3119.5 (2)C19—C18—C15119.6 (3)
C5—C4—C8119.4 (2)C19—C18—H18120.2
C3—C4—C8121.0 (2)C15—C18—H18120.2
C6—C5—C4119.6 (2)C18—C19—C20119.4 (3)
C6—C5—H5120.2C18—C19—H19120.3
C4—C5—H5120.2C20—C19—H19120.3
C5—C6—C1121.0 (2)N2—C20—C19122.9 (3)
C5—C6—H6119.5N2—C20—H20118.5
C1—C6—H6119.5C19—C20—H20118.5
O2—C7—O1124.1 (2)C9—N1—C13117.1 (2)
O2—C7—C1118.2 (2)C9—N1—Co1128.26 (19)
O1—C7—C1117.7 (2)C13—N1—Co1114.67 (19)
O3—C8—O4124.0 (2)C20—N2—C14117.9 (3)
O3—C8—C4123.5 (2)C20—N2—Co1128.6 (2)
O4—C8—C4112.5 (2)C14—N2—Co1113.37 (18)
N1—C9—C10123.2 (3)C7—O1—Co1131.64 (15)
N1—C9—H9118.4H1A—O1W—H1B103 (3)
C10—C9—H9118.4C8—O4—H4109.5
C11—C10—C9119.1 (3)O1—Co1—O1i106.24 (9)
C11—C10—H10120.5O1—Co1—N1i97.10 (7)
C9—C10—H10120.5O1i—Co1—N1i86.97 (7)
C10—C11—C12119.8 (3)O1—Co1—N186.97 (7)
C10—C11—H11120.1O1i—Co1—N197.10 (7)
C12—C11—H11120.1N1i—Co1—N1173.25 (12)
C11—C12—C13117.4 (3)O1—Co1—N2162.80 (8)
C11—C12—C17123.4 (3)O1i—Co1—N283.42 (7)
C13—C12—C17119.2 (3)N1i—Co1—N297.60 (9)
N1—C13—C12123.5 (3)N1—Co1—N277.60 (9)
N1—C13—C14116.4 (3)O1—Co1—N2i83.42 (7)
C12—C13—C14120.0 (3)O1i—Co1—N2i162.80 (8)
N2—C14—C15122.9 (3)N1i—Co1—N2i77.60 (9)
N2—C14—C13117.8 (2)N1—Co1—N2i97.60 (8)
C15—C14—C13119.2 (3)N2—Co1—N2i91.07 (11)
C6—C1—C2—C34.1 (3)C14—C15—C18—C19−0.7 (4)
C7—C1—C2—C3−170.5 (2)C16—C15—C18—C19178.7 (3)
C6—C1—C2—C2i−171.09 (18)C15—C18—C19—C202.1 (5)
C7—C1—C2—C2i14.4 (3)C18—C19—C20—N2−0.8 (5)
C1—C2—C3—C4−1.4 (3)C10—C9—N1—C130.0 (4)
C2i—C2—C3—C4173.90 (19)C10—C9—N1—Co1−178.9 (2)
C2—C3—C4—C5−1.4 (4)C12—C13—N1—C90.0 (4)
C2—C3—C4—C8179.6 (2)C14—C13—N1—C9177.3 (2)
C3—C4—C5—C61.7 (4)C12—C13—N1—Co1179.0 (2)
C8—C4—C5—C6−179.4 (2)C14—C13—N1—Co1−3.6 (3)
C4—C5—C6—C11.0 (4)C19—C20—N2—C14−1.9 (4)
C2—C1—C6—C5−3.9 (4)C19—C20—N2—Co1−176.8 (2)
C7—C1—C6—C5170.7 (2)C15—C14—N2—C203.4 (4)
C6—C1—C7—O245.0 (3)C13—C14—N2—C20−175.8 (2)
C2—C1—C7—O2−140.4 (2)C15—C14—N2—Co1179.0 (2)
C6—C1—C7—O1−134.1 (2)C13—C14—N2—Co1−0.1 (3)
C2—C1—C7—O140.5 (3)O2—C7—O1—Co1−137.2 (2)
C5—C4—C8—O3−2.7 (4)C1—C7—O1—Co141.8 (3)
C3—C4—C8—O3176.3 (3)C7—O1—Co1—O1i−63.12 (19)
C5—C4—C8—O4177.5 (2)C7—O1—Co1—N1i25.8 (2)
C3—C4—C8—O4−3.6 (3)C7—O1—Co1—N1−159.6 (2)
N1—C9—C10—C111.1 (5)C7—O1—Co1—N2174.4 (2)
C9—C10—C11—C12−2.1 (5)C7—O1—Co1—N2i102.3 (2)
C10—C11—C12—C132.0 (4)C9—N1—Co1—O19.2 (2)
C10—C11—C12—C17−177.4 (3)C13—N1—Co1—O1−169.69 (17)
C11—C12—C13—N1−0.9 (4)C9—N1—Co1—O1i−96.8 (2)
C17—C12—C13—N1178.5 (3)C13—N1—Co1—O1i84.31 (17)
C11—C12—C13—C14−178.3 (2)C9—N1—Co1—N2−178.4 (2)
C17—C12—C13—C141.2 (4)C13—N1—Co1—N22.68 (17)
N1—C13—C14—N22.5 (3)C9—N1—Co1—N2i92.2 (2)
C12—C13—C14—N2180.0 (2)C13—N1—Co1—N2i−86.74 (17)
N1—C13—C14—C15−176.7 (2)C20—N2—Co1—O1−159.6 (2)
C12—C13—C14—C150.8 (4)C14—N2—Co1—O125.3 (3)
N2—C14—C15—C18−2.1 (4)C20—N2—Co1—O1i75.0 (2)
C13—C14—C15—C18177.0 (2)C14—N2—Co1—O1i−100.13 (17)
N2—C14—C15—C16178.4 (3)C20—N2—Co1—N1i−11.1 (2)
C13—C14—C15—C16−2.4 (4)C14—N2—Co1—N1i173.83 (17)
C18—C15—C16—C17−177.4 (3)C20—N2—Co1—N1173.8 (2)
C14—C15—C16—C172.1 (5)C14—N2—Co1—N1−1.35 (17)
C15—C16—C17—C120.0 (5)C20—N2—Co1—N2i−88.7 (2)
C11—C12—C17—C16177.8 (3)C14—N2—Co1—N2i96.20 (19)
C13—C12—C17—C16−1.6 (5)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.890 (10)1.929 (11)2.811 (3)171 (3)
O4—H4···O2ii0.821.742.535 (2)163
O1W—H1B···O3iii0.889 (10)2.177 (19)2.934 (3)143 (2)

Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2694).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288.
  • Lehn, J. M. (1990). Angew. Chem. Int. Ed. Engl.29, 1304–1305.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zang, S.-Q., Su, Y., Li, Y.-Z., Zhu, H.-Z. & Meng, Q.-J. (2006). Inorg. Chem.45, 2972–2978. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography