PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1145.
Published online 2008 May 24. doi:  10.1107/S1600536808014980
PMCID: PMC2961534

Bis[4-(2-hydr­oxy-3-methoxy­benzyl­ideneamino)phen­yl] ether

Abstract

The title compound, C28H24N2O5, a flexible Schiff base ligand, was prepared in high yield by a Schiff base condensation of 3-methoxy­salicylaldehyde and bis­(4-amino­phen­yl) ether in methanol. The mol­ecule lies on a twofold rotation axis, and each half exhibits an imine E configuration and an O—H(...)N hydrogen bond. The dihedral angle between the two benzene rings attached to the central O atom is 69.22 (6)°, and that between each of these rings and the other benzene ring in the same half of the mol­ecule is 24.29 (11)°, illustrating the degree of twisting of the flexible mol­ecule.

Related literature

For related literature, see: Chu et al. (2007 [triangle]); Guo et al. (2002 [triangle]); He et al. (2000 [triangle]); Tesouro Vallina et al. (2001 [triangle]); Yoshida et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1145-scheme1.jpg

Experimental

Crystal data

  • C28H24N2O5
  • M r = 468.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1145-efi1.jpg
  • a = 15.585 (7) Å
  • b = 7.578 (4) Å
  • c = 19.859 (9) Å
  • β = 92.760 (8)°
  • V = 2342.7 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 8736 measured reflections
  • 2689 independent reflections
  • 2016 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.166
  • S = 1.11
  • 2689 reflections
  • 165 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014980/cf2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014980/cf2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Within the field of supramolecular inorganic chemistry, self-assembly is one of the most efficient methods for complex architectures comprising spatially and geometrically well defined arrays of metal ions. Because of easy syntheses by simple one-pot condensation reactions between aldehydes (or ketones) and amines and their coordinating ability with metal ions, multidentate Schiff base ligands such as pyridylimines (He et al., 2000; Guo et al., 2002; Tesouro Vallina et al., 2001) and salicyladimines (Yoshida et al., 1999; Chu et al., 2007) were designed and used to prepare complexes in recent years. Here we report the synthesis and structure of a new flexible Schiff base ligand, bis(N-(3-methoxysalicylidene)-4-aminophenyl) ether. The molecule lies on a twofold rotation axis, and each half exhibits an imine E configuration and an O—H···N hydrogen bond. The dihedral angle between the two benzene rings attached to the central O atom is 69.22 (6)°, and that between each of these rings and the other benzene ring in the same half of the molecule is 24.29 (11)°, illustrating the degree of twisting of the flexible molecule. The bond lengths and angles are in agreement with those reported for other salicyladimines ligands (Chu et al., 2007).

Experimental

The title compound was prepared by a Schiff-base condensation of 3-methoxysalicylaldehyde (3.04 g, 20 mmol) and bis(4-aminophenyl) ether (2.02 g, 10 mmol) in methanol (40 ml). The solution was stirred and refluxed for 1 day. The orange precipitate was filtered off, washed with a small amount of methanol and dried in vacuo. Yield: 91%. Well shaped orange crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a chloroform solution of the title compound at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.96 Å; O—H = 0.84 Å), assigned isotropic displacement parameters equal to 1.2Ueq of the parent atoms, and allowed to ride on these parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2-x, y, 3/2-z.]

Crystal data

C28H24N2O5F000 = 984
Mr = 468.49Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 15.585 (7) ÅCell parameters from 2635 reflections
b = 7.578 (4) Åθ = 1.7–25.1º
c = 19.859 (9) ŵ = 0.09 mm1
β = 92.760 (8)ºT = 173 (2) K
V = 2342.7 (19) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer2016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Monochromator: graphiteθmax = 27.5º
T = 173(2) Kθmin = 2.6º
ω scansh = −20→19
Absorption correction: nonek = −9→9
8736 measured reflectionsl = −22→25
2689 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166  w = 1/[σ2(Fo2) + (0.0739P)2 + 0.5764P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2689 reflectionsΔρmax = 0.15 e Å3
165 parametersΔρmin = −0.13 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.88064 (10)0.0091 (2)0.52377 (7)0.0561 (4)
O11.0000−0.3717 (3)0.75000.0694 (6)
O20.78593 (9)0.02484 (16)0.41186 (7)0.0660 (4)
H30.8101−0.02190.44610.079*
C40.91503 (11)−0.0853 (3)0.58068 (8)0.0527 (5)
C130.80476 (12)0.1980 (2)0.41092 (9)0.0521 (4)
O30.71769 (10)0.21180 (19)0.31172 (8)0.0739 (5)
C120.77074 (13)0.3000 (2)0.35765 (10)0.0572 (5)
C30.98968 (12)−0.0344 (3)0.61733 (9)0.0574 (5)
H81.02100.06590.60360.069*
C60.90099 (13)−0.3309 (3)0.65622 (10)0.0610 (5)
H90.8709−0.43330.66940.073*
C50.87355 (12)−0.2368 (3)0.59967 (10)0.0591 (5)
H100.8250−0.27720.57330.071*
C80.85726 (12)0.2774 (2)0.46152 (10)0.0564 (5)
C21.01805 (12)−0.1291 (3)0.67334 (9)0.0581 (5)
H121.0689−0.09410.69810.070*
C70.89139 (13)0.1765 (3)0.51873 (10)0.0602 (5)
C10.97295 (13)−0.2738 (3)0.69341 (9)0.0562 (5)
C110.79102 (15)0.4744 (3)0.35347 (12)0.0718 (6)
H150.76850.54260.31650.086*
C140.66750 (17)0.3156 (3)0.26521 (12)0.0825 (7)
H16A0.63880.40960.28950.124*
H16B0.62430.24080.24180.124*
H16C0.70480.36790.23220.124*
C90.87598 (16)0.4578 (3)0.45639 (12)0.0744 (6)
H170.91100.51380.49050.089*
C100.84410 (17)0.5530 (3)0.40260 (14)0.0825 (7)
H180.85840.67430.39880.099*
H40.9250 (14)0.249 (3)0.5555 (12)0.082 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0574 (9)0.0669 (10)0.0438 (8)−0.0043 (8)0.0010 (7)−0.0009 (7)
O10.0892 (14)0.0622 (12)0.0554 (11)0.000−0.0097 (10)0.000
O20.0793 (10)0.0517 (7)0.0653 (9)−0.0103 (7)−0.0143 (7)0.0074 (6)
C40.0519 (10)0.0664 (11)0.0400 (9)−0.0021 (8)0.0041 (7)−0.0068 (8)
C130.0562 (10)0.0481 (10)0.0528 (10)−0.0019 (8)0.0097 (8)0.0000 (8)
O30.0880 (11)0.0637 (9)0.0679 (9)0.0048 (7)−0.0170 (8)0.0087 (7)
C120.0614 (11)0.0546 (11)0.0561 (11)0.0051 (9)0.0081 (9)0.0020 (9)
C30.0554 (10)0.0723 (12)0.0448 (10)−0.0124 (9)0.0057 (8)−0.0027 (9)
C60.0654 (12)0.0565 (11)0.0610 (12)−0.0098 (9)0.0007 (10)−0.0014 (9)
C50.0557 (11)0.0639 (11)0.0566 (11)−0.0071 (9)−0.0074 (9)−0.0077 (9)
C80.0591 (11)0.0536 (10)0.0571 (11)0.0004 (8)0.0091 (9)−0.0054 (8)
C20.0528 (10)0.0767 (13)0.0446 (10)−0.0101 (9)−0.0009 (8)−0.0068 (9)
C70.0628 (12)0.0658 (12)0.0521 (11)−0.0022 (10)0.0030 (9)−0.0116 (9)
C10.0614 (11)0.0625 (11)0.0443 (10)0.0019 (9)−0.0013 (8)−0.0048 (8)
C110.0819 (15)0.0571 (12)0.0768 (14)0.0050 (11)0.0087 (12)0.0074 (11)
C140.1016 (18)0.0836 (15)0.0610 (13)0.0289 (13)−0.0081 (12)0.0036 (11)
C90.0833 (15)0.0583 (12)0.0814 (15)−0.0083 (11)0.0010 (12)−0.0145 (11)
C100.1018 (18)0.0466 (11)0.0993 (19)−0.0044 (12)0.0076 (15)0.0029 (12)

Geometric parameters (Å, °)

N1—C71.284 (3)C6—C11.382 (3)
N1—C41.421 (2)C6—H90.950
O1—C1i1.394 (2)C5—H100.950
O1—C11.394 (2)C8—C91.402 (3)
O2—C131.345 (2)C8—C71.449 (3)
O2—H30.840C2—C11.372 (3)
C4—C51.379 (3)C2—H120.950
C4—C31.397 (3)C7—H41.04 (2)
C13—C121.394 (3)C11—C101.383 (3)
C13—C81.401 (3)C11—H150.950
O3—C121.375 (2)C14—H16A0.980
O3—C141.419 (2)C14—H16B0.980
C12—C111.363 (3)C14—H16C0.980
C3—C21.379 (3)C9—C101.363 (3)
C3—H80.950C9—H170.950
C6—C51.381 (3)C10—H180.950
C7—N1—C4120.94 (16)C1—C2—C3120.11 (17)
C1i—O1—C1115.8 (2)C1—C2—H12119.9
C13—O2—H3109.5C3—C2—H12119.9
C5—C4—C3118.51 (17)N1—C7—C8122.55 (17)
C5—C4—N1118.23 (16)N1—C7—H4122.3 (12)
C3—C4—N1123.24 (18)C8—C7—H4115.2 (12)
O2—C13—C12118.43 (17)C2—C1—C6120.57 (17)
O2—C13—C8121.98 (16)C2—C1—O1121.33 (16)
C12—C13—C8119.59 (17)C6—C1—O1118.06 (18)
C12—O3—C14117.23 (17)C12—C11—C10120.5 (2)
C11—C12—O3124.41 (18)C12—C11—H15119.8
C11—C12—C13120.21 (19)C10—C11—H15119.8
O3—C12—C13115.39 (17)O3—C14—H16A109.5
C2—C3—C4120.22 (18)O3—C14—H16B109.5
C2—C3—H8119.9H16A—C14—H16B109.5
C4—C3—H8119.9O3—C14—H16C109.5
C5—C6—C1118.99 (19)H16A—C14—H16C109.5
C5—C6—H9120.5H16B—C14—H16C109.5
C1—C6—H9120.5C10—C9—C8120.2 (2)
C4—C5—C6121.44 (17)C10—C9—H17119.9
C4—C5—H10119.3C8—C9—H17119.9
C6—C5—H10119.3C9—C10—C11120.5 (2)
C13—C8—C9118.89 (19)C9—C10—H18119.7
C13—C8—C7121.02 (17)C11—C10—H18119.7
C9—C8—C7120.09 (18)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H3···N10.841.872.611 (2)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2200).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chu, Z. L. & Huang, W. (2007). J. Mol. Struct.837, 15–22.
  • Guo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. J. (2002). Inorg. Chem.41, 5978–5985. [PubMed]
  • He, C., Duan, C. Y., Fang, C. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tesouro Vallina, A. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m59–m61.
  • Yoshida, N., Oshio, H. & Ito, T. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 975–983.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography