PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1040–o1041.
Published online 2008 May 10. doi:  10.1107/S1600536808013056
PMCID: PMC2961530

(4R,5S)-5-Benzyl-4-isopropyl-1,3,4-oxadiazinan-2-one

Abstract

The title compound, C13H18N2O2, is an N4-isopropyl-l-phenyl­alanine-based oxadiazinanone. Although the two mol­ecules in the asymmetric unit are oriented appropriately for hydrogen bonding, the distance between the donor and acceptor atoms is large enough to support only weak, if any, hydrogen bonding. The absolute configuration is known based on the known starting compounds in the synthetic procedure.

Related literature

For related literature, see: Burgeson et al. (2004 [triangle]); Casper, Blackburn et al. (2002 [triangle]); Casper, Burgeson et al. (2002 [triangle]); Casper & Hitchcock (2003 [triangle]); Dore et al. (2006 [triangle]); Ferrence et al. (2003 [triangle]); Hitchcock et al. (2004 [triangle]); Hitchcock et al. (2001 [triangle]); Squire et al. (2005 [triangle]); Szczepura et al. (2004 [triangle]); Bruno et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1040-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O2
  • M r = 234.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1040-efi1.jpg
  • a = 9.6423 (14) Å
  • b = 11.4974 (17) Å
  • c = 22.600 (3) Å
  • V = 2505.5 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 (2) K
  • 0.43 × 0.23 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan SADABS in SAINT-Plus (Bruker, 2003 [triangle]) T min = 0.965, T max = 0.981
  • 25602 measured reflections
  • 3499 independent reflections
  • 3403 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.133
  • S = 1.32
  • 3499 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013056/sg2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013056/sg2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Matthias Zeller, Youngstown State University Structure & Chemical Instrumentation Facility, for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

supplementary crystallographic information

Comment

The synthesis (Hitchcock et al., 2001), conformational analysis (Casper, Blackburn et al., 2002; Burgeson et al. 2004), and asymmetric applications (Casper & Hitchcock, 2003; Casper, Burgeson et al., 2002; Ferrence et al. 2003; Hitchcock et al. 2004; Hitchcock et al. 2001; Squire et al. 2005; Szczepura et al. 2004) of 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-ones have only thoroughly been studied in the last ten years. We have been interested in synthesizing new oxadiazinanones for use as chiral auxillaries in aldol addition reactions. We synthesized the title compound in order to study the conformation that the heterocycle adopts. Herein we report the single-crystal X-ray structure analysis of the N4-isopropyl-L-phenylalanine based oxiadiazinanone.

Other oxadiazinanones have been reported and studied, but the title compound is one of few studied that is not substituted at the N3 position. Other oxadiazinanone structures (Burgeson et al., 2004; Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003; Hitchcock et al., 2001, 2004) are substituted with a carbonyl at the N3 position. These N3 substituted oxadiazinanones adopt a twist-boat conformation, as does the title compound. This is also consistent with related oxadiazinanones not substituted at the N3 position (Szczepura et al., 2004). The C7B—C5B—N4B—C14B torsion angle is 159.1 (2)°, and the C7A—C5A—N4A—C14A torsion angle is 155.5 (2)°. Previously reported oxadiazinanones with no substitution at the N3 position have torsion angles between 161.79–163.16°. A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles and distances to be normal. The molecular structure (Fig. 1.) of I includes two independent molecules in the asymmetric unit. The oxadiazinanone moieties are essentially isostructural. The primary difference between the two molecules is the orientation of the benzyl group attached to C5A/B (Figs. 2. and 3.). The respective -56.9 (3)° N4A—C5A—C7B—C8A and -175.5 (2)° N4A—C5A—C7B—C8A torsion angles quantify this difference.

Hydrogen-bonding interactions usually appear to play a key role in the crystal packing of oxadiazinanones (Szczepura et al., 2004). However, it may be that the optimal crystal packing simply happens to yield an arrangement of molecules which are suggestive of a hydrogen bonding motif. That is packing forces other than formation of the weak H-bonding fortuitously lead to the motif. In the title compound, the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations are large enough to support only weak, if any, hydrogen bonding (Fig 4.). This interaction is further illustrated in the Jmol enhanced figure (Fig. 5).

Experimental

The title compound was prepared as previously reported (Dore et al. (2006)).

Refinement

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and CH2 and CH; N–H = 0.88 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A Mercury view of the asymmetric unit of (I) highlighting the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations which support only weak, if any, hydrogen bonding.
Fig. 3.
A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with H atoms shown in light blue.
Fig. 4.
A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with one molecule shown in blue and one shown in violet.
Fig. 5.
Jmol enhanced figure of I. The default view shows the basic unit-cell contents. The pair of molecules forming the asymmetric unit and the putative H-bonding pair of molecules may be highlighted when viewing the active enhanced figure.

Crystal data

C13H18N2O2F000 = 1008
Mr = 234.29Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8817 reflections
a = 9.6423 (14) Åθ = 2.3–30.5º
b = 11.4974 (17) ŵ = 0.09 mm1
c = 22.600 (3) ÅT = 100 (2) K
V = 2505.5 (6) Å3Block, colourless
Z = 80.43 × 0.23 × 0.23 mm

Data collection

Bruker SMART APEX CCD diffractometer3403 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.041
Monochromator: graphiteθmax = 28.3º
ω scansθmin = 1.8º
Absorption correction: multi-scanSADABS in SAINT-Plus (Bruker, 2003)h = −12→12
Tmin = 0.965, Tmax = 0.981k = −15→15
25602 measured reflectionsl = −29→30
3499 independent reflections

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0413P)2 + 1.6549P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.060(Δ/σ)max < 0.001
wR(F2) = 0.133Δρmax = 0.37 e Å3
S = 1.32Δρmin = −0.25 e Å3
3499 reflectionsExtinction correction: none
307 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.5275 (2)0.74524 (18)0.71574 (9)0.0200 (4)
C2A0.5986 (3)0.7897 (3)0.76134 (13)0.0176 (6)
O17A0.6692 (2)0.87684 (18)0.75304 (9)0.0213 (4)
N3A0.5897 (2)0.7389 (2)0.81457 (10)0.0170 (5)
H3A0.65120.76030.84120.02*
N4A0.4904 (2)0.6534 (2)0.83257 (10)0.0154 (5)
C5A0.3806 (3)0.6483 (2)0.78779 (12)0.0165 (5)
H5A0.32650.57520.79430.02*
C6A0.4435 (3)0.6429 (3)0.72638 (13)0.0191 (6)
H6A10.50150.57230.72270.023*
H6A20.36870.63850.69640.023*
C7A0.2806 (3)0.7517 (3)0.79456 (13)0.0206 (6)
H7A10.33170.82470.78650.025*
H7A20.20590.74470.76470.025*
C8A0.2163 (3)0.7588 (3)0.85530 (13)0.0189 (6)
C9A0.0827 (3)0.7173 (3)0.86541 (14)0.0232 (6)
H9A0.0310.6860.83330.028*
C10A0.0233 (3)0.7206 (3)0.92131 (15)0.0263 (7)
H10A−0.06810.69210.92730.032*
C11A0.0976 (3)0.7656 (3)0.96826 (14)0.0251 (7)
H11A0.05840.76691.00680.03*
C12A0.2293 (3)0.8086 (3)0.95870 (15)0.0281 (7)
H12A0.28020.84070.99080.034*
C13A0.2878 (3)0.8053 (3)0.90287 (15)0.0249 (7)
H13A0.37860.83540.89710.03*
C14A0.5541 (3)0.5392 (2)0.84671 (13)0.0180 (6)
H14A0.57230.49530.80930.022*
C15A0.6894 (3)0.5566 (3)0.88013 (14)0.0250 (7)
H15A0.75470.59990.85520.037*
H15B0.72910.48080.89020.037*
H15C0.67140.60060.91650.037*
C16A0.4514 (4)0.4714 (3)0.88512 (15)0.0285 (7)
H16A0.36440.46060.86330.043*
H16B0.43310.51490.92160.043*
H16C0.49080.39520.8950.043*
O1B0.8672 (2)0.98233 (18)0.94720 (9)0.0218 (5)
C2B0.7980 (3)0.9425 (2)0.89999 (13)0.0175 (5)
O17B0.7047 (2)0.87193 (19)0.90751 (9)0.0221 (5)
N3B0.8282 (3)0.9856 (2)0.84613 (11)0.0187 (5)
H3B0.78240.9550.81630.022*
N4B0.9257 (3)1.0754 (2)0.83144 (11)0.0177 (5)
C5B0.9584 (3)1.1386 (2)0.88641 (13)0.0188 (6)
H5B1.04511.18410.87920.023*
C6B0.9879 (3)1.0537 (2)0.93632 (14)0.0200 (6)
H6B11.06761.00360.92560.024*
H6B21.01231.09710.97270.024*
C7B0.8430 (3)1.2258 (3)0.90152 (14)0.0216 (6)
H7B10.82721.27790.86730.026*
H7B20.75581.18320.90940.026*
C8B0.8812 (3)1.2979 (2)0.95530 (14)0.0205 (6)
C9B0.9766 (4)1.3882 (3)0.95059 (15)0.0261 (7)
H9B1.01291.40840.91290.031*
C10B1.0197 (4)1.4496 (3)1.00054 (16)0.0291 (7)
H10B1.08451.51140.99680.035*
C11B0.9680 (4)1.4202 (3)1.05520 (17)0.0325 (8)
H11B0.99781.46131.08940.039*
C12B0.8727 (4)1.3309 (3)1.06053 (16)0.0341 (8)
H12B0.83681.31081.09830.041*
C13B0.8296 (4)1.2707 (3)1.01068 (15)0.0286 (7)
H13B0.76361.20991.01460.034*
C14B1.0493 (3)1.0225 (3)0.80199 (13)0.0207 (6)
H14B1.09730.96920.83030.025*
C15B1.0028 (4)0.9540 (3)0.74778 (15)0.0255 (6)
H15D0.93940.89190.760.038*
H15E1.0840.91980.72830.038*
H15F0.95531.00620.72010.038*
C16B1.1483 (4)1.1180 (3)0.78295 (15)0.0320 (8)
H16D1.17881.16190.81780.048*
H16E1.1011.17050.75540.048*
H16F1.2291.08330.76340.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0219 (10)0.0205 (10)0.0176 (9)−0.0022 (9)−0.0014 (8)0.0017 (8)
C2A0.0151 (12)0.0162 (13)0.0215 (14)0.0042 (11)−0.0003 (11)−0.0015 (11)
O17A0.0237 (10)0.0186 (10)0.0217 (10)−0.0034 (9)−0.0026 (9)0.0017 (9)
N3A0.0147 (11)0.0186 (11)0.0178 (11)−0.0011 (10)−0.0048 (9)−0.0007 (9)
N4A0.0146 (11)0.0122 (10)0.0193 (11)0.0005 (9)−0.0011 (9)0.0018 (9)
C5A0.0141 (12)0.0171 (12)0.0182 (13)−0.0037 (11)−0.0020 (10)0.0000 (11)
C6A0.0199 (14)0.0189 (13)0.0185 (14)−0.0034 (12)−0.0037 (11)−0.0001 (11)
C7A0.0178 (13)0.0234 (15)0.0207 (14)0.0031 (12)−0.0033 (11)0.0025 (12)
C8A0.0175 (13)0.0149 (13)0.0243 (14)0.0059 (11)−0.0035 (11)0.0008 (11)
C9A0.0196 (14)0.0234 (14)0.0267 (15)−0.0036 (13)−0.0054 (12)−0.0021 (13)
C10A0.0217 (15)0.0255 (15)0.0317 (16)−0.0036 (13)0.0020 (13)0.0049 (13)
C11A0.0286 (16)0.0246 (15)0.0221 (14)0.0080 (14)0.0000 (13)0.0029 (12)
C12A0.0248 (15)0.0331 (18)0.0265 (16)0.0082 (14)−0.0089 (13)−0.0110 (14)
C13A0.0147 (13)0.0271 (16)0.0329 (17)0.0028 (12)−0.0013 (12)−0.0063 (13)
C14A0.0232 (14)0.0139 (12)0.0169 (13)0.0039 (11)−0.0021 (11)0.0013 (10)
C15A0.0276 (16)0.0234 (15)0.0239 (15)0.0076 (13)−0.0055 (13)0.0013 (12)
C16A0.0364 (18)0.0229 (15)0.0262 (15)−0.0040 (14)−0.0032 (14)0.0086 (13)
O1B0.0249 (11)0.0187 (10)0.0218 (10)−0.0014 (9)−0.0009 (9)0.0005 (9)
C2B0.0183 (13)0.0134 (12)0.0207 (13)0.0045 (11)0.0003 (11)−0.0028 (11)
O17B0.0254 (11)0.0210 (10)0.0197 (10)−0.0059 (9)0.0037 (9)−0.0019 (8)
N3B0.0194 (12)0.0183 (12)0.0185 (11)−0.0044 (10)−0.0018 (10)0.0001 (9)
N4B0.0174 (11)0.0136 (10)0.0222 (12)−0.0026 (9)−0.0005 (9)0.0021 (9)
C5B0.0183 (13)0.0146 (12)0.0233 (14)−0.0044 (11)−0.0033 (11)0.0017 (11)
C6B0.0190 (13)0.0160 (12)0.0249 (15)0.0004 (11)−0.0045 (12)0.0010 (11)
C7B0.0202 (13)0.0159 (13)0.0286 (15)0.0020 (11)−0.0040 (12)−0.0003 (12)
C8B0.0190 (13)0.0141 (13)0.0284 (15)0.0063 (11)−0.0065 (12)−0.0013 (11)
C9B0.0283 (16)0.0179 (14)0.0319 (17)0.0011 (13)−0.0076 (14)0.0023 (13)
C10B0.0257 (16)0.0160 (14)0.046 (2)0.0012 (13)−0.0127 (15)−0.0024 (14)
C11B0.0362 (19)0.0232 (15)0.0382 (19)0.0108 (15)−0.0117 (16)−0.0114 (14)
C12B0.0343 (18)0.0376 (19)0.0305 (17)0.0087 (16)0.0041 (15)−0.0045 (15)
C13B0.0257 (15)0.0237 (17)0.0365 (18)0.0026 (14)0.0035 (14)−0.0045 (14)
C14B0.0161 (13)0.0246 (14)0.0215 (14)0.0050 (12)0.0007 (11)0.0062 (12)
C15B0.0250 (14)0.0223 (14)0.0291 (15)−0.0023 (13)0.0086 (12)−0.0022 (13)
C16B0.0276 (16)0.045 (2)0.0236 (16)−0.0147 (16)0.0054 (13)−0.0039 (15)

Geometric parameters (Å, °)

O1A—C2A1.339 (3)O1B—C2B1.339 (3)
O1A—C6A1.449 (3)O1B—C6B1.444 (4)
C2A—O17A1.226 (4)C2B—O17B1.223 (4)
C2A—N3A1.340 (4)C2B—N3B1.346 (4)
N3A—N4A1.431 (3)N3B—N4B1.435 (3)
N3A—H3A0.88N3B—H3B0.88
N4A—C5A1.466 (3)N4B—C5B1.474 (4)
N4A—C14A1.484 (3)N4B—C14B1.494 (4)
C5A—C6A1.516 (4)C5B—C6B1.519 (4)
C5A—C7A1.538 (4)C5B—C7B1.536 (4)
C5A—H5A1C5B—H5B1
C6A—H6A10.99C6B—H6B10.99
C6A—H6A20.99C6B—H6B20.99
C7A—C8A1.508 (4)C7B—C8B1.517 (4)
C7A—H7A10.99C7B—H7B10.99
C7A—H7A20.99C7B—H7B20.99
C8A—C13A1.385 (4)C8B—C13B1.383 (5)
C8A—C9A1.393 (4)C8B—C9B1.391 (4)
C9A—C10A1.388 (4)C9B—C10B1.394 (5)
C9A—H9A0.95C9B—H9B0.95
C10A—C11A1.381 (5)C10B—C11B1.374 (5)
C10A—H10A0.95C10B—H10B0.95
C11A—C12A1.380 (5)C11B—C12B1.383 (5)
C11A—H11A0.95C11B—H11B0.95
C12A—C13A1.383 (5)C12B—C13B1.386 (5)
C12A—H12A0.95C12B—H12B0.95
C13A—H13A0.95C13B—H13B0.95
C14A—C15A1.521 (4)C14B—C16B1.517 (4)
C14A—C16A1.530 (4)C14B—C15B1.524 (5)
C14A—H14A1C14B—H14B1
C15A—H15A0.98C15B—H15D0.98
C15A—H15B0.98C15B—H15E0.98
C15A—H15C0.98C15B—H15F0.98
C16A—H16A0.98C16B—H16D0.98
C16A—H16B0.98C16B—H16E0.98
C16A—H16C0.98C16B—H16F0.98
C2A—O1A—C6A117.9 (2)C2B—O1B—C6B117.4 (2)
O17A—C2A—O1A118.6 (3)O17B—C2B—O1B118.9 (3)
O17A—C2A—N3A121.9 (3)O17B—C2B—N3B121.9 (3)
O1A—C2A—N3A119.5 (3)O1B—C2B—N3B119.1 (3)
C2A—N3A—N4A126.7 (2)C2B—N3B—N4B128.0 (2)
C2A—N3A—H3A116.7C2B—N3B—H3B116
N4A—N3A—H3A116.7N4B—N3B—H3B116
N3A—N4A—C5A108.3 (2)N3B—N4B—C5B107.4 (2)
N3A—N4A—C14A113.1 (2)N3B—N4B—C14B109.5 (2)
C5A—N4A—C14A114.3 (2)C5B—N4B—C14B114.0 (2)
N4A—C5A—C6A110.2 (2)N4B—C5B—C6B110.4 (2)
N4A—C5A—C7A110.7 (2)N4B—C5B—C7B110.8 (2)
C6A—C5A—C7A111.9 (2)C6B—C5B—C7B113.0 (3)
N4A—C5A—H5A108N4B—C5B—H5B107.5
C6A—C5A—H5A108C6B—C5B—H5B107.5
C7A—C5A—H5A108C7B—C5B—H5B107.5
O1A—C6A—C5A110.1 (2)O1B—C6B—C5B109.9 (2)
O1A—C6A—H6A1109.6O1B—C6B—H6B1109.7
C5A—C6A—H6A1109.6C5B—C6B—H6B1109.7
O1A—C6A—H6A2109.6O1B—C6B—H6B2109.7
C5A—C6A—H6A2109.6C5B—C6B—H6B2109.7
H6A1—C6A—H6A2108.2H6B1—C6B—H6B2108.2
C8A—C7A—C5A112.9 (2)C8B—C7B—C5B111.1 (2)
C8A—C7A—H7A1109C8B—C7B—H7B1109.4
C5A—C7A—H7A1109C5B—C7B—H7B1109.4
C8A—C7A—H7A2109C8B—C7B—H7B2109.4
C5A—C7A—H7A2109C5B—C7B—H7B2109.4
H7A1—C7A—H7A2107.8H7B1—C7B—H7B2108
C13A—C8A—C9A117.8 (3)C13B—C8B—C9B118.4 (3)
C13A—C8A—C7A121.5 (3)C13B—C8B—C7B120.9 (3)
C9A—C8A—C7A120.7 (3)C9B—C8B—C7B120.5 (3)
C10A—C9A—C8A121.4 (3)C8B—C9B—C10B120.8 (3)
C10A—C9A—H9A119.3C8B—C9B—H9B119.6
C8A—C9A—H9A119.3C10B—C9B—H9B119.6
C11A—C10A—C9A119.7 (3)C11B—C10B—C9B119.7 (3)
C11A—C10A—H10A120.1C11B—C10B—H10B120.2
C9A—C10A—H10A120.1C9B—C10B—H10B120.2
C12A—C11A—C10A119.4 (3)C10B—C11B—C12B120.1 (3)
C12A—C11A—H11A120.3C10B—C11B—H11B119.9
C10A—C11A—H11A120.3C12B—C11B—H11B119.9
C11A—C12A—C13A120.6 (3)C11B—C12B—C13B119.9 (3)
C11A—C12A—H12A119.7C11B—C12B—H12B120
C13A—C12A—H12A119.7C13B—C12B—H12B120
C12A—C13A—C8A121.0 (3)C8B—C13B—C12B121.0 (3)
C12A—C13A—H13A119.5C8B—C13B—H13B119.5
C8A—C13A—H13A119.5C12B—C13B—H13B119.5
N4A—C14A—C15A110.2 (2)N4B—C14B—C16B109.5 (3)
N4A—C14A—C16A107.8 (2)N4B—C14B—C15B109.5 (2)
C15A—C14A—C16A109.9 (2)C16B—C14B—C15B109.3 (3)
N4A—C14A—H14A109.7N4B—C14B—H14B109.5
C15A—C14A—H14A109.7C16B—C14B—H14B109.5
C16A—C14A—H14A109.7C15B—C14B—H14B109.5
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C14A—C16A—H16A109.5C14B—C16B—H16D109.5
C14A—C16A—H16B109.5C14B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C14A—C16A—H16C109.5C14B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C6A—O1A—C2A—O17A−179.4 (2)C6B—O1B—C2B—O17B172.3 (2)
C6A—O1A—C2A—N3A−0.1 (4)C6B—O1B—C2B—N3B−11.2 (4)
O17A—C2A—N3A—N4A166.0 (3)O17B—C2B—N3B—N4B174.2 (3)
O1A—C2A—N3A—N4A−13.3 (4)O1B—C2B—N3B—N4B−2.2 (4)
C2A—N3A—N4A—C5A−12.3 (4)C2B—N3B—N4B—C5B−17.0 (4)
C2A—N3A—N4A—C14A115.5 (3)C2B—N3B—N4B—C14B107.2 (3)
N3A—N4A—C5A—C6A47.0 (3)N3B—N4B—C5B—C6B46.5 (3)
C14A—N4A—C5A—C6A−80.2 (3)C14B—N4B—C5B—C6B−75.0 (3)
N3A—N4A—C5A—C7A−77.3 (3)N3B—N4B—C5B—C7B−79.5 (3)
C14A—N4A—C5A—C7A155.5 (2)C14B—N4B—C5B—C7B159.1 (2)
C2A—O1A—C6A—C5A35.5 (3)C2B—O1B—C6B—C5B41.9 (3)
N4A—C5A—C6A—O1A−60.1 (3)N4B—C5B—C6B—O1B−61.0 (3)
C7A—C5A—C6A—O1A63.5 (3)C7B—C5B—C6B—O1B63.7 (3)
N4A—C5A—C7A—C8A−56.9 (3)N4B—C5B—C7B—C8B−175.5 (2)
C6A—C5A—C7A—C8A179.9 (2)C6B—C5B—C7B—C8B60.0 (3)
C5A—C7A—C8A—C13A79.7 (4)C5B—C7B—C8B—C13B−99.3 (3)
C5A—C7A—C8A—C9A−99.6 (3)C5B—C7B—C8B—C9B76.3 (3)
C13A—C8A—C9A—C10A−0.9 (5)C13B—C8B—C9B—C10B0.3 (5)
C7A—C8A—C9A—C10A178.4 (3)C7B—C8B—C9B—C10B−175.4 (3)
C8A—C9A—C10A—C11A−0.2 (5)C8B—C9B—C10B—C11B0.4 (5)
C9A—C10A—C11A—C12A1.1 (5)C9B—C10B—C11B—C12B−0.6 (5)
C10A—C11A—C12A—C13A−1.0 (5)C10B—C11B—C12B—C13B0.2 (5)
C11A—C12A—C13A—C8A−0.2 (5)C9B—C8B—C13B—C12B−0.7 (5)
C9A—C8A—C13A—C12A1.1 (5)C7B—C8B—C13B—C12B175.0 (3)
C7A—C8A—C13A—C12A−178.3 (3)C11B—C12B—C13B—C8B0.5 (5)
N3A—N4A—C14A—C15A40.3 (3)N3B—N4B—C14B—C16B176.4 (2)
C5A—N4A—C14A—C15A164.9 (2)C5B—N4B—C14B—C16B−63.2 (3)
N3A—N4A—C14A—C16A160.2 (2)N3B—N4B—C14B—C15B56.5 (3)
C5A—N4A—C14A—C16A−75.2 (3)C5B—N4B—C14B—C15B176.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2243).

References

  • Bruker (2003). SMART-Plus and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem.69, 727–734. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem.67, 8871–8876. [PubMed]
  • Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett.4, 3739–3742. [PubMed]
  • Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517–521.
  • Dore, D. D., Burgeson, J. R., Davis, R. A. & Hitchcock, S. R. (2006). Tetrahedron:Asymmetry.17, 2386–2392.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.
  • Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem.69, 714–718. [PubMed]
  • Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Squire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047–1053.
  • Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography