PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1031.
Published online 2008 May 10. doi:  10.1107/S1600536808013378
PMCID: PMC2961529

2-Bromo­methyl-N-isopropyl-7,8-dimeth­oxy-1,2-dihydro-1,3-oxazolo[3,2-a]quinoline-4-carboxamide

Abstract

In the title compound, C18H21BrN2O5, conjugation between the π-donating N—C—O fragment and the π-withdrawing carbonyl group results in considerable redistribution of the electron density within the dihydropyridinol ring. This effect is also promoted by the formation of an intra­molecular N—H(...)O hydrogen bond. The five-membered heterocycle is disordered over two envelope conformations in a 0.35:0.65 ratio.

Related literature

For related literature, see: Ukrainets et al. (2007a [triangle],b [triangle]); Bürgi & Dunitz (1994 [triangle]); Hutcheon & James (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1031-scheme1.jpg

Experimental

Crystal data

  • C18H21BrN2O5
  • M r = 425.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1031-efi1.jpg
  • a = 8.736 (2) Å
  • b = 9.968 (2) Å
  • c = 10.588 (3) Å
  • α = 86.90 (2)°
  • β = 80.90 (2)°
  • γ = 80.04 (2)°
  • V = 896.4 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.33 mm−1
  • T = 100 (2) K
  • 0.60 × 0.40 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer
  • Absorption correction: analytical (Alcock, 1970 [triangle]) T min = 0.287, T max = 0.793
  • 6292 measured reflections
  • 3105 independent reflections
  • 2701 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.171
  • S = 1.05
  • 3105 reflections
  • 258 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 1.76 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: XP (Siemens, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013378/kp2166sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013378/kp2166Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2-Bromomethyl-5-oxo-1,2-dihydro-5H-oxazolo[3,2-a]quinoline-4- carboxylic acids are labile compounds. Therefore, their amidation are not always successful (Ukrainets et al., 2007a; Ukrainets et al., 2007b). However the heterocyclization of the previously synthesized NR-amides of 1-allyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids was straightforward into the NR-amides of oxazolo-quinoline-4-carboxylic acids (I) (Scheme 1). In the present paper, we report the crystal structure of the title compound, (I). The benzpyridone fragment and the O1, C11, O5, O4, O3, C13, O2, N2 atoms are cooplanar whithin 0.02 Å. The C7—O3 (1.263 (5) Å) and C8—C9 (1.386 (6) Å) bonds are elongated comparing to the values in the literature (1.210 Å and 1.326 Å; Burgi & Dunitz, 1994) whereas the C9—O1 (1.336 (5) Å) and N1—C9 (1.333 (6) Å) bonds are shorter than their mean values retrieved from the quoted references (1.354 Å and 1.336 Å). Such redistribution of the electron density can be explained by the conjugation interactions between the N1—C9—O1 π-donating fragment and the C7—O3 π-acceptor carbonyl group. Similar effect was observed earlier in related structure (Hucheon & James, 1977). The formation of the N2—H2N···O3 intramolecular hydrogen bond (Table 1) also promotes the elongation of the carbonyl bond. The five-membered heterocycle ring is disodered over two envelope conformations (A and B) with population A:B 35:65%. The deviation of the C10 atom from the mean plane of the remaining atoms of the ring is -0.41 Å in the conformer A and 0.35 Å in B. The bromomethyl substituent in both conformers is in a pseudo-equatorial orientation (the C9—O1—C10—C12 torsion angle is 145.1 (7) %A in A and -138.1 (5) %A in B). The bromine atom is not disordered and it is located in ap-position relatively to the O1—C10 bond in both conformers [the O1—C10—C12—Br1 torsion angle is -179.9 (6) %A (A) and 178.5 (3) %A (B)]. The methoxy groups at the C3 and C4 atoms are almost coplanar to the plane of the aromatic ring (the C18—O5—C3—C2 and C17—O4—C4—C5 torsion angles are 4.2 (6) %A and -6.2 (6) %A, respectively). The isopropyl group has ap-conformation relatively to the C8—C13 bond and it is turned away from the C13—N2 bond (the C14—N2—C13—C8 and C13—N2—C14—H14a torsion angles are 174.7 (4) %A and -40%A, respectively). In the crystal the molecules of the title compound form the three-dimensional network via intermolecular hydrogen bonds (Table 1). The shortened intermolecular contacts H14a···Br1i (i = -x,-y,1 - z) 3.13 Å (van der Waals sum 3.23 Å), H18c···C7ii (ii = 1 - x,1 - y,1 - z) 2.70 Å (2.87 Å), Br1···Br1iii (iii = 1 - x,-y,-z) 3.42 Å (3.94 Å) were observed in the crystal. Stacking interaction between parallel aromatic rings is observed [the shortest C3···C1ii (1 - x,1 - y,1 - z) distance is 3.45 Å].

Experimental

To a stirred solution of the 1-allyl-4-hydroxy-6,7-dimethoxy-2-oxo- 1,2-dihydroquinoline-3-carboxylic acid isopropylamide (3.46 g, 10.0 mmol) in acetic acid (70 ml) was added bromine (0.52 ml, 10.0 mmol) (the solution turned to be colourless). The mixture was diluted with water. The precipitate formed was filtered off, washed with cold water and dried. Yield 3.95 g (93%). m.p. 542–544 K.

Refinement

All hydrogen atoms were calculated geometrically and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms. During refinement the O-Csp3 and Csp3-Csp3 bonds in the disordered fragment were constrained to 1.44 (1) Å and 1.54 (1) Å, respectively.

Figures

Fig. 1.
View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level. More predominant orientation (65%) of the disodered fragment of the oxazol ring is shown.
Fig. 2.
The formation of the title compound.

Crystal data

C18H21BrN2O5Z = 2
Mr = 425.28F000 = 436
Triclinic, P1Dx = 1.576 Mg m3
a = 8.736 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 9.968 (2) ÅCell parameters from 2385 reflections
c = 10.588 (3) Åθ = 4–32º
α = 86.90 (2)ºµ = 2.33 mm1
β = 80.90 (2)ºT = 100 (2) K
γ = 80.04 (2)ºPlate, colourless
V = 896.4 (4) Å30.60 × 0.40 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur3 diffractometer3105 independent reflections
Radiation source: Enhance (Mo) X-ray Source2701 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.089
Detector resolution: 16.1827 pixels mm-1θmax = 25.0º
T = 100(2) Kθmin = 3.3º
ω scansh = −10→10
Absorption correction: analytical(Alcock, 1970)k = −11→11
Tmin = 0.287, Tmax = 0.793l = −12→12
6292 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.171  w = 1/[σ2(Fo2) + (0.0978P)2 + 1.3451P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3105 reflectionsΔρmax = 1.76 e Å3
258 parametersΔρmin = −0.88 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.34636 (6)0.06689 (5)0.11180 (4)0.0383 (2)
N10.2519 (5)0.3824 (4)0.4324 (3)0.0265 (8)
N2−0.0961 (4)0.3493 (4)0.8290 (3)0.0225 (8)
H2A−0.08540.43370.84070.027*
O10.1378 (4)0.2004 (3)0.4688 (3)0.0292 (7)
O2−0.0441 (4)0.1744 (3)0.6927 (3)0.0308 (8)
O30.0389 (4)0.5646 (3)0.7631 (3)0.0298 (7)
O40.3952 (4)0.8815 (3)0.5332 (3)0.0256 (7)
O50.5279 (4)0.7664 (3)0.3238 (3)0.0262 (7)
C10.2878 (5)0.5081 (4)0.4564 (4)0.0222 (9)
C20.3940 (5)0.5707 (4)0.3692 (4)0.0228 (9)
H2B0.44320.52820.29160.027*
C30.4256 (5)0.6961 (4)0.3988 (4)0.0216 (9)
C40.3527 (5)0.7586 (4)0.5161 (4)0.0233 (9)
C50.2488 (5)0.6966 (4)0.5983 (4)0.0243 (9)
H5A0.19870.74000.67530.029*
C60.2142 (5)0.5693 (4)0.5715 (4)0.0226 (9)
C70.1030 (5)0.5046 (5)0.6613 (4)0.0237 (9)
C80.0756 (5)0.3709 (4)0.6301 (4)0.0223 (9)
C90.1530 (5)0.3193 (4)0.5138 (4)0.0239 (9)
C10A0.1932 (13)0.2038 (11)0.3329 (6)0.034 (4)0.352 (14)
H10A0.10490.23610.28320.041*0.352 (14)
C12A0.2721 (17)0.0571 (12)0.2995 (14)0.034 (4)0.352 (14)
H12A0.1958−0.00670.31980.040*0.352 (14)
H12B0.36140.02690.34710.040*0.352 (14)
C10B0.2633 (7)0.1653 (5)0.3608 (5)0.0207 (18)0.648 (14)
H10B0.35270.09730.38540.025*0.648 (14)
C12B0.1808 (8)0.1107 (7)0.2615 (5)0.0202 (19)0.648 (14)
H12C0.09390.18040.23790.024*0.648 (14)
H12D0.13760.02820.29540.024*0.648 (14)
C110.3126 (5)0.3038 (4)0.3165 (4)0.0264 (10)
H11B0.42170.25590.31700.032*0.352 (14)
H11A0.30700.36140.23760.032*0.352 (14)
H11C0.42810.29600.29440.032*0.648 (14)
H11D0.26230.34390.24250.032*0.648 (14)
C13−0.0266 (5)0.2875 (4)0.7177 (4)0.0219 (9)
C14−0.1879 (5)0.2772 (5)0.9286 (4)0.0259 (9)
H14A−0.25150.22220.88800.031*
C15−0.2986 (6)0.3822 (5)1.0142 (5)0.0344 (11)
H15A−0.36790.44160.96270.052*
H15B−0.23690.43711.05340.052*
H15C−0.36210.33531.08130.052*
C16−0.0800 (7)0.1829 (6)1.0052 (5)0.0425 (13)
H16A−0.01010.11640.94850.064*
H16B−0.14280.13501.07200.064*
H16C−0.01690.23621.04490.064*
C170.3101 (5)0.9556 (4)0.6430 (4)0.0260 (9)
H17A0.34971.04120.64700.039*
H17B0.32480.90050.72100.039*
H17C0.19800.97540.63560.039*
C180.6008 (5)0.7119 (5)0.2022 (4)0.0263 (9)
H18A0.67100.77230.15860.039*
H18B0.51960.70500.14990.039*
H18C0.66150.62130.21510.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0475 (4)0.0419 (4)0.0227 (3)−0.0146 (2)0.0145 (2)−0.0105 (2)
N10.030 (2)0.033 (2)0.0146 (17)−0.0092 (15)0.0090 (15)−0.0082 (15)
N20.0215 (18)0.0273 (19)0.0159 (17)−0.0045 (14)0.0062 (14)−0.0004 (14)
O10.0334 (18)0.0305 (17)0.0208 (16)−0.0113 (13)0.0137 (13)−0.0070 (13)
O20.0341 (18)0.0302 (17)0.0258 (16)−0.0107 (13)0.0104 (14)−0.0068 (13)
O30.0322 (17)0.0343 (17)0.0224 (16)−0.0134 (13)0.0074 (14)−0.0053 (13)
O40.0254 (16)0.0266 (15)0.0233 (16)−0.0063 (12)0.0047 (13)−0.0056 (13)
O50.0280 (16)0.0304 (16)0.0191 (15)−0.0113 (13)0.0077 (13)−0.0023 (12)
C10.020 (2)0.027 (2)0.019 (2)−0.0027 (16)−0.0005 (17)−0.0025 (17)
C20.020 (2)0.031 (2)0.0145 (19)−0.0028 (16)0.0039 (16)−0.0006 (17)
C30.018 (2)0.029 (2)0.016 (2)−0.0027 (16)0.0026 (16)0.0019 (17)
C40.020 (2)0.028 (2)0.021 (2)−0.0046 (16)−0.0007 (17)−0.0006 (17)
C50.023 (2)0.027 (2)0.021 (2)−0.0021 (16)0.0023 (17)−0.0060 (17)
C60.018 (2)0.030 (2)0.018 (2)−0.0022 (16)0.0017 (17)−0.0033 (17)
C70.021 (2)0.031 (2)0.018 (2)−0.0030 (16)−0.0004 (17)−0.0033 (17)
C80.023 (2)0.031 (2)0.0118 (19)−0.0037 (16)0.0018 (17)−0.0010 (16)
C90.023 (2)0.028 (2)0.021 (2)−0.0063 (17)−0.0005 (18)−0.0028 (17)
C10A0.029 (9)0.038 (9)0.034 (9)−0.010 (7)0.002 (7)0.003 (7)
C12A0.030 (8)0.040 (9)0.031 (8)−0.011 (7)0.002 (6)−0.017 (6)
C10B0.020 (4)0.020 (4)0.018 (4)0.002 (3)0.003 (3)0.003 (3)
C12B0.016 (4)0.031 (4)0.016 (3)−0.013 (3)0.002 (3)−0.004 (3)
C110.028 (2)0.032 (2)0.018 (2)−0.0109 (18)0.0104 (18)−0.0082 (18)
C130.017 (2)0.027 (2)0.019 (2)−0.0014 (16)0.0020 (17)−0.0020 (17)
C140.025 (2)0.032 (2)0.018 (2)−0.0069 (18)0.0061 (18)−0.0017 (17)
C150.028 (2)0.040 (3)0.030 (3)−0.002 (2)0.009 (2)−0.005 (2)
C160.048 (3)0.038 (3)0.031 (3)0.006 (2)0.008 (2)0.006 (2)
C170.025 (2)0.027 (2)0.024 (2)−0.0041 (17)0.0018 (18)−0.0041 (18)
C180.023 (2)0.035 (2)0.019 (2)−0.0080 (18)0.0050 (18)0.0002 (18)

Geometric parameters (Å, °)

Br1—C12B1.981 (6)C10A—C12A1.539 (5)
Br1—C12A1.99 (1)C10A—C111.547 (5)
N1—C91.334 (6)C10A—H10A1.000
N1—C11.388 (6)C12A—H12A0.990
N1—C111.469 (5)C12A—H12B0.990
N2—C131.363 (5)C10B—C12B1.535 (5)
N2—C141.457 (5)C10B—C111.544 (4)
N2—H2A0.880C10B—H10B1.000
O1—C91.336 (5)C12B—H12C0.990
O1—C10A1.445 (5)C12B—H12D0.990
O1—C10B1.465 (4)C11—H11B0.990
O2—C131.212 (5)C11—H11A0.990
O3—C71.263 (5)C11—H11C0.990
O4—C41.369 (5)C11—H11D0.990
O4—C171.442 (5)C14—C161.511 (7)
O5—C31.361 (5)C14—C151.525 (6)
O5—C181.433 (5)C14—H14A1.000
C1—C61.403 (6)C15—H15A0.980
C1—C21.403 (6)C15—H15B0.980
C2—C31.387 (6)C15—H15C0.980
C2—H2B0.950C16—H16A0.980
C3—C41.426 (6)C16—H16B0.980
C4—C51.360 (6)C16—H16C0.980
C5—C61.408 (6)C17—H17A0.980
C5—H5A0.950C17—H17B0.980
C6—C71.456 (6)C17—H17C0.980
C7—C81.458 (6)C18—H18A0.980
C8—C91.386 (6)C18—H18B0.980
C8—C131.503 (6)C18—H18C0.980
C9—N1—C1122.8 (4)C10B—C12B—H12C110.7
C9—N1—C11111.5 (3)Br1—C12B—H12C110.7
C1—N1—C11125.6 (3)C10B—C12B—H12D110.7
C13—N2—C14120.8 (4)Br1—C12B—H12D110.7
C13—N2—H2A119.6H12C—C12B—H12D108.8
C14—N2—H2A119.6N1—C11—C10B100.3 (3)
C9—O1—C10A107.1 (4)N1—C11—C10A98.6 (4)
C9—O1—C10B108.5 (3)N1—C11—H11B112.0
C4—O4—C17115.8 (3)C10B—C11—H11B85.6
C3—O5—C18118.0 (3)C10A—C11—H11B112.0
N1—C1—C6117.2 (4)N1—C11—H11A112.0
N1—C1—C2121.3 (4)C10B—C11—H11A134.1
C6—C1—C2121.5 (4)C10A—C11—H11A112.0
C3—C2—C1118.6 (4)H11B—C11—H11A109.7
C3—C2—H2B120.7N1—C11—H11C111.7
C1—C2—H2B120.7C10B—C11—H11C111.7
O5—C3—C2124.4 (4)C10A—C11—H11C135.7
O5—C3—C4115.1 (4)H11A—C11—H11C86.1
C2—C3—C4120.4 (4)N1—C11—H11D111.7
C5—C4—O4125.9 (4)C10B—C11—H11D111.7
C5—C4—C3119.9 (4)C10A—C11—H11D86.6
O4—C4—C3114.2 (4)H11B—C11—H11D128.5
C4—C5—C6121.2 (4)H11C—C11—H11D109.5
C4—C5—H5A119.4O2—C13—N2122.8 (4)
C6—C5—H5A119.4O2—C13—C8123.1 (4)
C1—C6—C5118.4 (4)N2—C13—C8114.2 (4)
C1—C6—C7121.4 (4)N2—C14—C16110.1 (4)
C5—C6—C7120.2 (4)N2—C14—C15108.4 (4)
O3—C7—C6118.9 (4)C16—C14—C15110.9 (4)
O3—C7—C8123.4 (4)N2—C14—H14A109.1
C6—C7—C8117.7 (4)C16—C14—H14A109.1
C9—C8—C7116.5 (4)C15—C14—H14A109.1
C9—C8—C13119.8 (4)C14—C15—H15A109.5
C7—C8—C13123.7 (4)C14—C15—H15B109.5
N1—C9—O1111.4 (4)H15A—C15—H15B109.5
N1—C9—C8124.2 (4)C14—C15—H15C109.5
O1—C9—C8124.4 (4)H15A—C15—H15C109.5
O1—C10A—C12A105.8 (8)H15B—C15—H15C109.5
O1—C10A—C11104.2 (4)C14—C16—H16A109.5
C12A—C10A—C11112.4 (9)C14—C16—H16B109.5
O1—C10A—H10A111.4H16A—C16—H16B109.5
C12A—C10A—H10A111.4C14—C16—H16C109.5
C11—C10A—H10A111.4H16A—C16—H16C109.5
C10A—C12A—Br1104.3 (8)H16B—C16—H16C109.5
C10A—C12A—H12A110.9O4—C17—H17A109.5
Br1—C12A—H12A110.9O4—C17—H17B109.5
C10A—C12A—H12B110.9H17A—C17—H17B109.5
Br1—C12A—H12B110.9O4—C17—H17C109.5
H12A—C12A—H12B108.9H17A—C17—H17C109.5
O1—C10B—C12B104.0 (4)H17B—C17—H17C109.5
O1—C10B—C11103.4 (3)O5—C18—H18A109.5
C12B—C10B—C11111.4 (5)O5—C18—H18B109.5
O1—C10B—H10B112.4H18A—C18—H18B109.5
C12B—C10B—H10B112.4O5—C18—H18C109.5
C11—C10B—H10B112.4H18A—C18—H18C109.5
C10B—C12B—Br1105.1 (4)H18B—C18—H18C109.5
C9—N1—C1—C6−0.5 (7)C1—N1—C9—C80.0 (7)
C11—N1—C1—C6178.1 (4)C11—N1—C9—C8−178.8 (4)
C9—N1—C1—C2179.2 (4)C10A—O1—C9—N1−18.1 (7)
C11—N1—C1—C2−2.2 (7)C10B—O1—C9—N113.6 (5)
N1—C1—C2—C3−179.7 (4)C10A—O1—C9—C8161.7 (7)
C6—C1—C2—C3−0.1 (7)C10B—O1—C9—C8−166.6 (5)
C18—O5—C3—C24.1 (6)C7—C8—C9—N11.7 (7)
C18—O5—C3—C4−177.6 (4)C13—C8—C9—N1−176.6 (4)
C1—C2—C3—O5178.9 (4)C7—C8—C9—O1−178.1 (4)
C1—C2—C3—C40.7 (6)C13—C8—C9—O13.6 (7)
C17—O4—C4—C5−6.1 (6)C9—O1—C10A—C12A145.3 (7)
C17—O4—C4—C3172.8 (4)C9—O1—C10A—C1126.6 (9)
O5—C3—C4—C5−179.8 (4)O1—C10A—C12A—Br1−180.0 (6)
C2—C3—C4—C5−1.4 (7)C11—C10A—C12A—Br1−66.9 (9)
O5—C3—C4—O41.2 (6)C9—O1—C10B—C12B−138.0 (5)
C2—C3—C4—O4179.6 (4)C9—O1—C10B—C11−21.5 (5)
O4—C4—C5—C6−179.6 (4)O1—C10B—C12B—Br1178.5 (3)
C3—C4—C5—C61.6 (7)C11—C10B—C12B—Br167.7 (5)
N1—C1—C6—C5179.8 (4)C9—N1—C11—C10B−13.9 (5)
C2—C1—C6—C50.2 (7)C1—N1—C11—C10B167.4 (5)
N1—C1—C6—C7−0.9 (6)C9—N1—C11—C10A14.8 (7)
C2—C1—C6—C7179.5 (4)C1—N1—C11—C10A−164.0 (6)
C4—C5—C6—C1−0.9 (7)O1—C10B—C11—N120.3 (5)
C4—C5—C6—C7179.8 (4)C12B—C10B—C11—N1131.5 (5)
C1—C6—C7—O3−179.4 (4)O1—C10A—C11—N1−24.0 (8)
C5—C6—C7—O3−0.1 (7)C12A—C10A—C11—N1−138.1 (8)
C1—C6—C7—C82.6 (6)C14—N2—C13—O24.3 (7)
C5—C6—C7—C8−178.2 (4)C14—N2—C13—C8−174.8 (4)
O3—C7—C8—C9179.1 (4)C9—C8—C13—O20.9 (7)
C6—C7—C8—C9−2.9 (6)C7—C8—C13—O2−177.3 (4)
O3—C7—C8—C13−2.6 (7)C9—C8—C13—N2180.0 (4)
C6—C7—C8—C13175.4 (4)C7—C8—C13—N21.7 (6)
C1—N1—C9—O1179.8 (4)C13—N2—C14—C1679.8 (5)
C11—N1—C9—O11.0 (5)C13—N2—C14—C15−158.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.881.912.634 (5)138
C10A—H10A···O3i1.002.233.042137
C12A—H12A···O2ii0.992.333.289164
C12A—H12B···O4iii0.992.413.173134
C12B—H12D···O2ii0.992.303.253162
C17—H17A···O5iv0.982.413.380172

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2166).

References

  • Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.
  • Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.
  • Hutcheon, W. L. B. & James, M. N. G. (1977). Acta Cryst. B33, 2228–2232.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1998). XP Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.
  • Ukrainets, I. V., Bereznyakova, L. V., Turov, A. V. & Shihkina, S. V. (2007a). Khim. Geterotsikl. Soedin. pp. 1034–1042.
  • Ukrainets, I. V., Sidorenko, L. V., Gorokhova, O. V., Shishkina, S. V. & Turov, A. V. (2007b). Khim. Geterotsikl. Soedin. pp. 736–749.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography