PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1072.
Published online 2008 May 14. doi:  10.1107/S1600536808013305
PMCID: PMC2961526

Methyl 5-bromo-2-chloro­pyridine-3-carboxyl­ate

Abstract

The title compound, C7H5BrClNO2, crystallizes with two independent molecules in the asymmetric unit. In the absence of classical inter­molecular inter­actions, the crystal structure exhibits relatively short inter­molecular Br(...)O distances [3.143 (9) and 3.162 (9)Å].

Related literature

For the biological activity of the title compound, see: Colarusso & Narjes (2004 [triangle]); Kim et al. (2006 [triangle]). For related crystal structures, see McArdle et al. (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1072-scheme1.jpg

Experimental

Crystal data

  • C7H5BrClNO2
  • M r = 250.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1072-efi1.jpg
  • a = 3.978 (2) Å
  • b = 8.153 (3) Å
  • c = 14.040 (2) Å
  • α = 96.89 (2)°
  • β = 96.20 (3)°
  • γ = 100.70 (2)°
  • V = 440.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.93 mm−1
  • T = 298 (2) K
  • 0.16 × 0.14 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.506, T max = 0.638
  • 2186 measured reflections
  • 1818 independent reflections
  • 1564 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.130
  • S = 1.09
  • 1818 reflections
  • 217 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −0.90 e Å−3
  • Absolute structure: Flack (1983 [triangle]); 70 Friedel pairs
  • Flack parameter: 0.01 (2)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Selected interatomic distances (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013305/cv2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013305/cv2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), is a useful intermediate for the synthesis of various bioactive compounds (Colarusso et al., 2004; Kim et al., 2006). In this paper, we report its crystal structure.

Compound (I) crystallizes with two independent molecules in the non-centrosymmetric triclinic unit cell (Fig. 1). The bond lengths and angles in the molecules are normal and in a good agreement with those reported previously (McArdle et al., 1982). The dihedral angles between the planes of the methoxycarbonyl group (C6/C7/O1/O2; C13/C23/O3/O4) and pyridine rings in the two independent molecules are 45.8 (2) and 44.0 (3)°, respectively. In the abscence of classical intermolecular interactions, the crystal packing exhibits relatively short intermolecular Br···O distances (Table 1).

Experimental

A solution of 5-bromo-2-hydroxynicotinic acid (0.138 mol) and N, N-dimethylformamide (0.138 mol) in thionyl chloride (160 mL) was refluxed for 2 h. Thionyl chloride was evaporated and the yellow residue dissolved in anhydrous dichloromethane (200 mL), then anhydrous methanol was added dropwise. The resulting mixture was refluxed for 1 h and evaporated to afford slightly yellow oil which crystallized upon standing at room temperature. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution at room temperature over a period of one week.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 times Ueq(C).

Figures

Fig. 1.
Two independent molecules of (I) with atomic numbering and displacement ellipsoids drawn at the 40% probability level.

Crystal data

C7H5BrClNO2Z = 2
Mr = 250.48F000 = 244
Triclinic, P1Dx = 1.890 Mg m3
Hall symbol: P 1Mo Kα radiation λ = 0.71073 Å
a = 3.978 (2) ÅCell parameters from 947 reflections
b = 8.153 (3) Åθ = 2.6–24.3º
c = 14.040 (2) ŵ = 4.93 mm1
α = 96.89 (2)ºT = 298 (2) K
β = 96.20 (3)ºBlock, colourless
γ = 100.70 (2)º0.16 × 0.14 × 0.10 mm
V = 440.2 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1818 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −4→3
Tmin = 0.506, Tmax = 0.639k = −9→9
2186 measured reflectionsl = −14→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044  w = 1/[σ2(Fo2) + (0.0806P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.17 e Å3
1818 reflectionsΔρmin = −0.90 e Å3
217 parametersExtinction correction: none
3 restraintsAbsolute structure: Flack (1983); 70 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.3498 (2)0.81123 (11)0.74398 (8)0.0523 (3)
Br20.3533 (3)1.31291 (12)−0.24715 (8)0.0530 (3)
Cl10.8539 (9)0.7931 (4)0.3331 (2)0.0552 (7)
Cl21.2578 (8)1.5050 (4)0.1624 (2)0.0555 (7)
O11.083 (3)1.2390 (10)0.5287 (6)0.074 (3)
O20.762 (2)1.1535 (9)0.3865 (5)0.0522 (19)
O31.295 (3)1.8504 (10)−0.0331 (6)0.080 (3)
O41.116 (2)1.8360 (9)0.1109 (5)0.0529 (19)
N10.579 (3)0.6646 (10)0.4701 (7)0.050 (2)
N20.843 (3)1.3036 (11)0.0259 (7)0.053 (2)
C10.703 (3)0.8099 (12)0.4449 (7)0.040 (2)
C20.735 (3)0.9674 (12)0.5010 (7)0.037 (2)
C30.627 (3)0.9656 (12)0.5894 (7)0.038 (2)
H3A0.64541.06630.63030.045*
C40.490 (3)0.8134 (12)0.6187 (7)0.042 (2)
C50.464 (3)0.6665 (14)0.5574 (8)0.055 (3)
H5A0.36580.56500.57640.066*
C60.880 (3)1.1312 (12)0.4727 (7)0.043 (2)
C70.885 (3)1.3097 (13)0.3515 (8)0.050 (3)
H7A0.77291.30620.28690.076*
H7B1.12971.32550.35110.076*
H7C0.83301.40150.39310.076*
C80.995 (3)1.4644 (13)0.0517 (8)0.042 (2)
C90.973 (3)1.5908 (12)−0.0031 (7)0.039 (2)
C100.783 (3)1.5431 (12)−0.0957 (7)0.042 (2)
H10A0.77061.6217−0.13810.050*
C110.616 (3)1.3777 (12)−0.1223 (7)0.040 (2)
C120.647 (3)1.2631 (13)−0.0611 (8)0.049 (3)
H12A0.52871.1523−0.08000.059*
C131.144 (3)1.7723 (13)0.0234 (7)0.042 (2)
C141.289 (3)2.0069 (11)0.1478 (8)0.047 (3)
H14A1.24482.03500.21300.071*
H14B1.20552.08240.10790.071*
H14C1.53342.01720.14700.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0550 (6)0.0621 (6)0.0479 (7)0.0190 (5)0.0166 (5)0.0206 (5)
Br20.0487 (6)0.0544 (6)0.0496 (7)0.0118 (4)−0.0056 (5)−0.0094 (5)
Cl10.068 (2)0.0575 (15)0.0389 (14)0.0144 (14)0.0110 (12)−0.0028 (12)
Cl20.067 (2)0.0589 (16)0.0397 (14)0.0138 (14)−0.0012 (12)0.0113 (12)
O10.092 (7)0.049 (4)0.064 (5)−0.012 (5)−0.013 (5)0.010 (4)
O20.058 (5)0.050 (4)0.047 (4)0.005 (4)0.004 (4)0.013 (3)
O30.115 (8)0.056 (5)0.059 (5)−0.019 (5)0.029 (5)0.005 (4)
O40.073 (6)0.041 (4)0.042 (4)0.005 (4)0.014 (4)−0.001 (3)
N10.059 (7)0.034 (5)0.053 (6)0.009 (4)−0.006 (5)−0.001 (4)
N20.066 (7)0.044 (5)0.048 (6)0.007 (5)0.012 (5)0.011 (4)
C10.035 (6)0.041 (6)0.043 (6)0.006 (4)0.007 (5)0.003 (5)
C20.033 (6)0.037 (5)0.040 (5)0.005 (4)−0.002 (4)0.006 (4)
C30.042 (6)0.041 (5)0.031 (5)0.011 (4)0.007 (4)0.006 (4)
C40.039 (6)0.045 (6)0.043 (6)0.013 (4)0.002 (4)0.004 (4)
C50.057 (8)0.047 (6)0.057 (7)0.005 (5)−0.001 (5)0.010 (5)
C60.043 (7)0.044 (6)0.035 (5)0.005 (5)−0.001 (4)−0.001 (4)
C70.070 (8)0.037 (6)0.049 (7)0.005 (5)0.024 (6)0.019 (5)
C80.049 (7)0.039 (6)0.041 (6)0.015 (5)0.015 (5)0.002 (4)
C90.047 (6)0.038 (5)0.033 (5)0.006 (5)0.013 (4)0.006 (4)
C100.051 (7)0.039 (5)0.037 (5)0.011 (5)0.012 (4)0.005 (4)
C110.031 (6)0.045 (6)0.044 (6)0.004 (4)0.004 (4)0.005 (4)
C120.049 (7)0.042 (6)0.052 (6)0.003 (5)0.009 (5)−0.001 (5)
C130.038 (6)0.049 (6)0.039 (6)0.007 (5)0.006 (4)0.011 (4)
C140.060 (7)0.024 (5)0.051 (7)0.003 (5)0.000 (5)−0.004 (4)

Geometric parameters (Å, °)

Br1—C41.902 (11)C3—C41.389 (14)
Br2—C111.902 (10)C3—H3A0.9300
Cl1—C11.740 (10)C4—C51.370 (15)
Cl2—C81.736 (12)C5—H5A0.9300
O1—C61.215 (11)C7—H7A0.9600
O2—C61.296 (11)C7—H7B0.9600
O2—C71.439 (12)C7—H7C0.9600
O3—C131.215 (11)C8—C91.368 (14)
O4—C131.299 (13)C9—C101.403 (13)
O4—C141.441 (12)C9—C131.494 (14)
N1—C11.302 (12)C10—C111.376 (13)
N1—C51.351 (15)C10—H10A0.9300
N2—C81.327 (13)C11—C121.357 (13)
N2—C121.346 (14)C12—H12A0.9300
C1—C21.400 (13)C14—H14A0.9600
C2—C31.357 (13)C14—H14B0.9600
C2—C61.471 (13)C14—H14C0.9600
Br1···O3i3.143 (9)Br2···O1ii3.162 (9)
C6—O2—C7119.8 (8)H7A—C7—H7C109.5
C13—O4—C14119.5 (9)H7B—C7—H7C109.5
C1—N1—C5117.0 (9)N2—C8—C9125.6 (11)
C8—N2—C12116.7 (9)N2—C8—Cl2114.0 (8)
N1—C1—C2125.8 (9)C9—C8—Cl2120.4 (8)
N1—C1—Cl1113.3 (8)C8—C9—C10116.4 (9)
C2—C1—Cl1120.9 (7)C8—C9—C13126.8 (9)
C3—C2—C1116.1 (8)C10—C9—C13116.7 (8)
C3—C2—C6118.3 (9)C11—C10—C9118.6 (8)
C1—C2—C6125.6 (9)C11—C10—H10A120.7
C2—C3—C4120.0 (9)C9—C10—H10A120.7
C2—C3—H3A120.0C12—C11—C10120.1 (9)
C4—C3—H3A120.0C12—C11—Br2121.1 (7)
C5—C4—C3119.2 (10)C10—C11—Br2118.8 (7)
C5—C4—Br1121.0 (8)N2—C12—C11122.5 (9)
C3—C4—Br1119.8 (7)N2—C12—H12A118.8
N1—C5—C4122.0 (10)C11—C12—H12A118.8
N1—C5—H5A119.0O3—C13—O4124.2 (9)
C4—C5—H5A119.0O3—C13—C9121.9 (9)
O1—C6—O2123.3 (9)O4—C13—C9114.0 (8)
O1—C6—C2121.6 (9)O4—C14—H14A109.5
O2—C6—C2115.0 (8)O4—C14—H14B109.5
O2—C7—H7A109.5H14A—C14—H14B109.5
O2—C7—H7B109.5O4—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14C109.5
O2—C7—H7C109.5H14B—C14—H14C109.5
C5—N1—C1—C21.3 (16)C12—N2—C8—C9−0.8 (17)
C5—N1—C1—Cl1178.3 (8)C12—N2—C8—Cl2−177.4 (8)
N1—C1—C2—C30.5 (16)N2—C8—C9—C10−2.7 (16)
Cl1—C1—C2—C3−176.3 (7)Cl2—C8—C9—C10173.7 (8)
N1—C1—C2—C6179.1 (9)N2—C8—C9—C13−179.3 (11)
Cl1—C1—C2—C62.4 (15)Cl2—C8—C9—C13−3.0 (15)
C1—C2—C3—C4−1.0 (14)C8—C9—C10—C114.3 (14)
C6—C2—C3—C4−179.8 (10)C13—C9—C10—C11−178.7 (9)
C2—C3—C4—C5−0.1 (15)C9—C10—C11—C12−2.6 (15)
C2—C3—C4—Br1178.4 (8)C9—C10—C11—Br2179.2 (8)
C1—N1—C5—C4−2.5 (16)C8—N2—C12—C112.8 (16)
C3—C4—C5—N12.0 (16)C10—C11—C12—N2−1.1 (16)
Br1—C4—C5—N1−176.5 (8)Br2—C11—C12—N2177.1 (9)
C7—O2—C6—O12.9 (18)C14—O4—C13—O3−3.9 (17)
C7—O2—C6—C2179.6 (10)C14—O4—C13—C9175.8 (10)
C3—C2—C6—O143.6 (16)C8—C9—C13—O3133.7 (12)
C1—C2—C6—O1−135.1 (12)C10—C9—C13—O3−42.9 (15)
C3—C2—C6—O2−133.2 (10)C8—C9—C13—O4−46.0 (15)
C1—C2—C6—O248.2 (15)C10—C9—C13—O4137.4 (10)

Symmetry codes: (i) x−1, y−1, z+1; (ii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2402).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Colarusso, S. & Narjes, F. (2004). World Patent WO 04 110 442.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kim, Y., Close, J., Duggan, M. E., Hanney, B., Meissner, R. S., Musselman, J., Perkins, J. J. & Wang, J. B. (2006). World Patent WO 06 060 108.
  • McArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471–474.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography