PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1094.
Published online 2008 May 17. doi:  10.1107/S1600536808014050
PMCID: PMC2961520

4-Eth­oxy-N-(3-phenyl­prop-2-enyl­idene)aniline

Abstract

The title compound, C17H17NO, was prepared by the condensation of cinnamaldehyde with p-phenetidine in ethanol. The prop-2-enyl­idene group exhibits an E configuration at the N=C and C=C double bonds, with C—N—C—C and C—C—C—C torsion angles of −179.9 (3) and −175.9 (3)°, respectively. The prop-2-enyl­idene group is not strictly planar [maximum deviation = 0.054 (4) Å] and forms dihedral angles of 28.0 (3) and 34.9 (3)° with the attached aromatic rings.

Related literature

For general background, see: Lindoy et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1094-scheme1.jpg

Experimental

Crystal data

  • C17H17NO
  • M r = 251.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1094-efi1.jpg
  • a = 31.12 (2) Å
  • b = 7.198 (6) Å
  • c = 6.315 (5) Å
  • β = 95.822 (10)°
  • V = 1407.3 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 (2) K
  • 0.52 × 0.47 × 0.30 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.963, T max = 0.978
  • 6773 measured reflections
  • 2449 independent reflections
  • 1165 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.221
  • S = 1.02
  • 2449 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014050/rz2203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014050/rz2203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People’s Republic of China.

supplementary crystallographic information

Comment

Schiff bases are known to be important due to their applications in the synthesis of dyes, liquid crystals and as powerful corrosion inhibitors. Furthermore, they are involved in the mechanisms of many biochemical processes (Lindoy et al., 1976). We report here the synthesis and crystal structure of the title compound, a new Schiff base compound.

The molecular structure of the title compound is shown in Fig. 1. The prop-2-enylidene group exhibits an E configuration at the N1═C1 (1.276 (4) Å) and C2═C3 (1.321 (5) Å) double bonds, with C10-N1-C1-C2 and C1-C2-C3-C4 torsion angles of -179.9 (3)° and -175.9 (3)° respectively. This group is not strictly planar (maximum deviation 0.054 (4) Å for atom C2) and forms dihedral angles of 28.0 (3) and 34.9 (3)° with the attached aromatic rings. The crystal structure (Fig. 2) is stabilized only by van der Waals interactions.

Experimental

Cinnamaldehyde (5 mmol, 660.8 mg) in absolute ethanol (10 ml) was added dropwise to an absolute ethanol solution (10 ml) of p-phenetidine (5 mmol, 690.7 mg). The mixture was heated under reflux with stirring for 4 h and then filtered. The resulting clear solution was kept at room temperature for one week, after which large pale-yellow block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, and Uiso(H) =1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Perspective view of the crystal packing of the title compound along the c axis. Hydrogen atoms are omitted for clarity.

Crystal data

C17H17NOF000 = 536
Mr = 251.32Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1073 reflections
a = 31.12 (2) Åθ = 2.6–23.2º
b = 7.198 (6) ŵ = 0.07 mm1
c = 6.315 (5) ÅT = 298 (2) K
β = 95.822 (10)ºBlock, pale-yellow
V = 1407.3 (19) Å30.52 × 0.47 × 0.30 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2449 independent reflections
Radiation source: fine-focus sealed tube1165 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.072
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −36→37
Tmin = 0.963, Tmax = 0.978k = −8→7
6773 measured reflectionsl = −7→5

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.221  w = 1/[σ2(Fo2) + (0.0854P)2 + 0.6793P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2449 reflectionsΔρmax = 0.17 e Å3
172 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.26172 (9)0.5173 (4)0.8270 (5)0.0442 (8)
O10.09317 (8)0.5040 (4)1.0522 (4)0.0547 (8)
C10.27064 (12)0.5295 (5)0.6347 (6)0.0434 (10)
H10.24810.53430.52620.052*
C20.31443 (12)0.5359 (5)0.5801 (6)0.0452 (10)
H20.33640.55060.69030.054*
C30.32565 (12)0.5225 (5)0.3845 (6)0.0450 (10)
H30.30330.51620.27500.054*
C40.36937 (11)0.5166 (5)0.3235 (6)0.0410 (10)
C50.37720 (13)0.4321 (6)0.1308 (6)0.0503 (11)
H50.35420.38540.04080.060*
C60.41851 (14)0.4178 (6)0.0742 (6)0.0588 (12)
H60.42320.3602−0.05320.071*
C70.45320 (14)0.4877 (6)0.2034 (7)0.0608 (12)
H70.48110.47720.16430.073*
C80.44578 (12)0.5730 (6)0.3907 (6)0.0537 (11)
H80.46880.62140.47880.064*
C90.40471 (11)0.5873 (5)0.4489 (6)0.0454 (10)
H90.40040.64620.57620.054*
C100.21832 (10)0.5112 (5)0.8727 (5)0.0353 (9)
C110.20976 (11)0.4159 (5)1.0554 (5)0.0387 (9)
H110.23230.35781.13820.046*
C120.16848 (11)0.4062 (5)1.1158 (6)0.0431 (10)
H120.16330.33791.23570.052*
C130.13480 (11)0.4965 (5)1.0008 (6)0.0390 (9)
C140.14323 (11)0.5926 (5)0.8180 (6)0.0414 (9)
H140.12080.65280.73700.050*
C150.18419 (11)0.5995 (5)0.7561 (5)0.0398 (9)
H150.18910.66470.63370.048*
C160.08474 (13)0.4248 (7)1.2501 (7)0.0698 (14)
H16A0.10520.47181.36370.084*
H16B0.08760.29071.24510.084*
C170.03980 (16)0.4766 (9)1.2899 (9)0.119 (2)
H17A0.03330.42451.42290.179*
H17B0.01980.42931.17690.179*
H17C0.03740.60951.29550.179*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.048 (2)0.048 (2)0.0374 (19)0.0020 (15)0.0063 (14)−0.0004 (16)
O10.0566 (18)0.057 (2)0.0525 (18)0.0042 (13)0.0146 (13)0.0112 (15)
C10.047 (2)0.039 (3)0.044 (2)0.0006 (17)0.0020 (18)−0.0006 (19)
C20.050 (2)0.045 (3)0.041 (2)−0.0010 (18)0.0020 (18)0.0020 (19)
C30.049 (2)0.042 (3)0.042 (2)−0.0004 (18)−0.0036 (18)0.0033 (19)
C40.051 (2)0.035 (2)0.037 (2)0.0016 (17)0.0039 (18)0.0060 (18)
C50.064 (3)0.049 (3)0.037 (2)−0.003 (2)0.003 (2)−0.001 (2)
C60.084 (3)0.052 (3)0.043 (3)0.008 (2)0.020 (2)0.001 (2)
C70.059 (3)0.068 (3)0.057 (3)0.009 (2)0.016 (2)0.011 (3)
C80.046 (2)0.063 (3)0.052 (3)0.0026 (19)0.0015 (19)0.001 (2)
C90.046 (2)0.046 (3)0.044 (2)0.0013 (18)0.0048 (18)−0.0039 (19)
C100.040 (2)0.028 (2)0.037 (2)0.0033 (15)0.0005 (16)−0.0010 (17)
C110.046 (2)0.038 (2)0.031 (2)0.0041 (16)0.0019 (16)0.0030 (17)
C120.057 (3)0.036 (2)0.036 (2)0.0005 (18)0.0066 (18)0.0039 (18)
C130.041 (2)0.035 (2)0.042 (2)−0.0028 (17)0.0089 (18)−0.0037 (18)
C140.050 (2)0.035 (2)0.039 (2)0.0034 (17)0.0006 (17)−0.0016 (18)
C150.059 (2)0.030 (2)0.031 (2)0.0018 (17)0.0074 (17)0.0044 (17)
C160.064 (3)0.083 (4)0.066 (3)−0.001 (2)0.022 (2)0.016 (3)
C170.083 (4)0.168 (7)0.116 (5)0.020 (4)0.057 (3)0.049 (5)

Geometric parameters (Å, °)

N1—C11.276 (4)C8—H80.9300
N1—C101.410 (4)C9—H90.9300
O1—C131.368 (4)C10—C151.384 (5)
O1—C161.422 (4)C10—C111.391 (4)
C1—C21.440 (5)C11—C121.378 (4)
C1—H10.9300C11—H110.9300
C2—C31.321 (5)C12—C131.376 (5)
C2—H20.9300C12—H120.9300
C3—C41.452 (5)C13—C141.393 (5)
C3—H30.9300C14—C151.372 (4)
C4—C91.386 (5)C14—H140.9300
C4—C51.404 (5)C15—H150.9300
C5—C61.373 (5)C16—C171.493 (6)
C5—H50.9300C16—H16A0.9700
C6—C71.380 (6)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—C81.373 (5)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.369 (5)
C1—N1—C10120.1 (3)C15—C10—N1125.2 (3)
C13—O1—C16117.2 (3)C11—C10—N1117.0 (3)
N1—C1—C2122.2 (3)C12—C11—C10121.1 (3)
N1—C1—H1118.9C12—C11—H11119.4
C2—C1—H1118.9C10—C11—H11119.4
C3—C2—C1124.6 (4)C13—C12—C11120.7 (3)
C3—C2—H2117.7C13—C12—H12119.6
C1—C2—H2117.7C11—C12—H12119.6
C2—C3—C4126.4 (4)O1—C13—C12125.6 (3)
C2—C3—H3116.8O1—C13—C14116.1 (3)
C4—C3—H3116.8C12—C13—C14118.3 (3)
C9—C4—C5117.2 (3)C15—C14—C13120.9 (3)
C9—C4—C3123.3 (3)C15—C14—H14119.6
C5—C4—C3119.5 (3)C13—C14—H14119.6
C6—C5—C4120.5 (4)C14—C15—C10121.1 (3)
C6—C5—H5119.8C14—C15—H15119.4
C4—C5—H5119.8C10—C15—H15119.4
C5—C6—C7121.1 (4)O1—C16—C17107.9 (4)
C5—C6—H6119.5O1—C16—H16A110.1
C7—C6—H6119.5C17—C16—H16A110.1
C8—C7—C6118.8 (4)O1—C16—H16B110.1
C8—C7—H7120.6C17—C16—H16B110.1
C6—C7—H7120.6H16A—C16—H16B108.4
C9—C8—C7120.6 (4)C16—C17—H17A109.5
C9—C8—H8119.7C16—C17—H17B109.5
C7—C8—H8119.7H17A—C17—H17B109.5
C8—C9—C4121.8 (4)C16—C17—H17C109.5
C8—C9—H9119.1H17A—C17—H17C109.5
C4—C9—H9119.1H17B—C17—H17C109.5
C15—C10—C11117.8 (3)
C10—N1—C1—C2−179.9 (3)C1—N1—C10—C11151.0 (3)
N1—C1—C2—C3170.1 (4)C15—C10—C11—C121.4 (5)
C1—C2—C3—C4−175.9 (3)N1—C10—C11—C12178.5 (3)
C2—C3—C4—C9−23.3 (6)C10—C11—C12—C13−2.4 (5)
C2—C3—C4—C5155.2 (4)C16—O1—C13—C125.5 (5)
C9—C4—C5—C61.4 (5)C16—O1—C13—C14−173.2 (3)
C3—C4—C5—C6−177.2 (4)C11—C12—C13—O1−176.5 (3)
C4—C5—C6—C7−0.7 (6)C11—C12—C13—C142.1 (5)
C5—C6—C7—C8−0.2 (6)O1—C13—C14—C15177.7 (3)
C6—C7—C8—C90.4 (6)C12—C13—C14—C15−1.0 (5)
C7—C8—C9—C40.3 (6)C13—C14—C15—C100.1 (5)
C5—C4—C9—C8−1.2 (5)C11—C10—C15—C14−0.3 (5)
C3—C4—C9—C8177.3 (4)N1—C10—C15—C14−177.1 (3)
C1—N1—C10—C15−32.2 (5)C13—O1—C16—C17170.5 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2203).

References

  • Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem.15, 1724–1727.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography