PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1088.
Published online 2008 May 17. doi:  10.1107/S1600536808014104
PMCID: PMC2961519

2-(4-Iodo­phen­yl)-5,7-dimethyl-3-methyl­sulfinyl-1-benzofuran

Abstract

The title compound, C17H15IO2S, was prepared by the oxidation of 2-(4-iodo­phen­yl)-5,7-dimethyl-3-methyl­sulfanyl-1-benzofuran using 3-chloro­peroxy­benzoic acid. The 4-iodo­phenyl ring makes a dihedral angle of 26.0 (1)° with the plane of the benzofuran fragment, and the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of this plane. The crystal structure is stabilized by inter- and intra­molecular C—H(...)O hydrogen bonds, and by an I(...)O halogen bond with an I(...)O distance of 3.145 (2) Å and a nearly linear C—I(...)O angle of 164.01 (9)°.

Related literature

For the crystal structures of similar 2-aryl-3-methyl­sulfinyl-1-benzofuran compounds, see: Choi et al. (2007a [triangle],b [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1088-scheme1.jpg

Experimental

Crystal data

  • C17H15IO2S
  • M r = 410.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1088-efi1.jpg
  • a = 8.6320 (9) Å
  • b = 8.917 (1) Å
  • c = 11.638 (1) Å
  • α = 94.580 (2)°
  • β = 100.949 (2)°
  • γ = 113.725 (2)°
  • V = 792.90 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.15 mm−1
  • T = 293 (2) K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.594, T max = 0.647
  • 6882 measured reflections
  • 3408 independent reflections
  • 3214 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.080
  • S = 1.22
  • 3408 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014104/zl2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014104/zl2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from Dongeui University (2008 A A098).

supplementary crystallographic information

Comment

As a part of our ongoing studies on the synthesis and structure of 2-aryl-3-methylsulfinyl-1-benzofuran analogues, the crystal structure of 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b) have been described in the literature. Here we report the crystal structure of the title compound, 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.01 Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by three different C—H···O hydrogen bonds; one between a methyl H atom and the furan O atom, i.e. C16—H16B···O1, and a second between a methyl H atom and the oxygen of a neighbouring S═O unit, i.e. C16—H16A···O2i, and a third between a methyl H atom of the methylsulfinyl substituent and the furan O atom of neighbouring molecules, i.e. C17—H17B···O1ii, (Fig. 2 and Table 1; symmetry code as in Fig. 2). Further stabilization of the structure comes from a weak I···O halogen bond (Fig. 2) (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring S═O unit, with an I···O2iii distance of 3.145 (2) Å (Symmetry code as in Fig. 2).

Experimental

77% 3-chloroperoxybenzoic acid (359 mg, 1.60 mmol) was added in small portions to a stirred solution of 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfanyl-1-benzofuran (591 mg, 1.50 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 80%, m.p. 450–451 K; Rf = 0.57 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.44 (s, 3H), 2.53 (s, 3H), 3.10 (s, 3H), 7.03 (s, 1H), 7.59 (d, J = 8.44 Hz, 2H), 7.80 (s, 1H), 7.84 (d, J = 8.44 Hz, 2H); EI—MS 410 [M+].

Refinement

All H atoms were geometrically located in ideal positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
C—H···O hydrogen bond and I···O halogen bond (dotted lines) in the title compound. [Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z + 1; (iii) x, y, z - 1; (iv) x, y, z + 1; (v) x, y - 1, z.] ...

Crystal data

C17H15IO2SZ = 2
Mr = 410.25F000 = 404
Triclinic, P1Dx = 1.718 Mg m3
Hall symbol: -p_1Melting point = 450–451 K
a = 8.6320 (9) ÅMo Kα radiation λ = 0.71069 Å
b = 8.917 (1) ÅCell parameters from 5631 reflections
c = 11.638 (1) Åθ = 2.5–28.3º
α = 94.580 (2)ºµ = 2.15 mm1
β = 100.949 (2)ºT = 293 (2) K
γ = 113.725 (2)ºBlock, colorless
V = 792.90 (14) Å30.40 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer3408 independent reflections
Radiation source: fine-focus sealed tube3214 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 293(2) Kθmin = 1.8º
[var phi] and ω scansh = −11→10
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)k = −11→11
Tmin = 0.594, Tmax = 0.647l = −14→14
6882 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0374P)2 + 0.4132P] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3408 reflectionsΔρmax = 0.50 e Å3
192 parametersΔρmin = −0.66 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.26443 (2)0.23987 (2)−0.006964 (16)0.03233 (9)
S0.10120 (10)0.19886 (8)0.60394 (7)0.02931 (16)
O10.3173 (3)0.6586 (2)0.54519 (18)0.0262 (4)
O20.2055 (3)0.1813 (3)0.7150 (2)0.0374 (5)
C10.1717 (4)0.4134 (3)0.6002 (3)0.0262 (6)
C20.2089 (4)0.5443 (3)0.6979 (3)0.0259 (5)
C30.1802 (4)0.5533 (4)0.8114 (3)0.0294 (6)
H30.11970.45690.83930.035*
C40.2430 (4)0.7078 (4)0.8822 (3)0.0309 (6)
C50.3335 (4)0.8521 (4)0.8378 (3)0.0307 (6)
H50.37380.95480.88620.037*
C60.3655 (4)0.8489 (4)0.7256 (3)0.0282 (6)
C70.2995 (4)0.6914 (3)0.6586 (3)0.0256 (6)
C80.2386 (4)0.4876 (3)0.5117 (3)0.0256 (5)
C90.2460 (4)0.4269 (3)0.3936 (2)0.0247 (5)
C100.1189 (4)0.2744 (4)0.3281 (3)0.0286 (6)
H100.02800.20980.35990.034*
C110.1279 (4)0.2191 (4)0.2158 (3)0.0292 (6)
H110.04380.11690.17280.035*
C120.2623 (4)0.3162 (4)0.1674 (3)0.0268 (6)
C130.3902 (4)0.4699 (4)0.2319 (3)0.0289 (6)
H130.48030.53480.19970.035*
C140.3811 (4)0.5239 (3)0.3437 (3)0.0274 (6)
H140.46560.62590.38660.033*
C150.2162 (5)0.7226 (5)1.0062 (3)0.0416 (8)
H15A0.09370.67061.00290.062*
H15B0.26330.83801.04090.062*
H15C0.27450.66871.05380.062*
C160.4651 (4)1.0036 (4)0.6797 (3)0.0387 (7)
H16A0.39791.06710.66820.058*
H16B0.48670.97300.60540.058*
H16C0.57421.06930.73620.058*
C17−0.1093 (4)0.1531 (4)0.6283 (4)0.0471 (9)
H17A−0.16750.03680.63140.071*
H17B−0.17640.18010.56460.071*
H17C−0.09760.21760.70220.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.03823 (13)0.03425 (13)0.02494 (12)0.01616 (9)0.00863 (8)0.00135 (8)
S0.0364 (4)0.0219 (3)0.0299 (4)0.0120 (3)0.0091 (3)0.0058 (3)
O10.0313 (10)0.0209 (9)0.0256 (10)0.0103 (8)0.0077 (8)0.0028 (8)
O20.0405 (12)0.0360 (12)0.0384 (13)0.0193 (10)0.0058 (10)0.0135 (10)
C10.0298 (13)0.0227 (13)0.0263 (14)0.0123 (11)0.0052 (11)0.0037 (11)
C20.0287 (13)0.0234 (13)0.0264 (14)0.0126 (11)0.0052 (11)0.0045 (11)
C30.0312 (14)0.0304 (14)0.0289 (15)0.0145 (12)0.0085 (12)0.0075 (12)
C40.0295 (14)0.0385 (16)0.0265 (15)0.0166 (13)0.0069 (11)0.0027 (12)
C50.0298 (14)0.0269 (14)0.0318 (15)0.0109 (12)0.0050 (12)−0.0023 (12)
C60.0240 (13)0.0253 (13)0.0339 (15)0.0100 (11)0.0068 (11)0.0011 (11)
C70.0254 (13)0.0250 (13)0.0264 (14)0.0117 (11)0.0049 (11)0.0031 (11)
C80.0260 (13)0.0219 (13)0.0269 (14)0.0097 (10)0.0032 (11)0.0036 (11)
C90.0271 (13)0.0237 (13)0.0224 (13)0.0114 (11)0.0031 (10)0.0042 (10)
C100.0275 (13)0.0271 (14)0.0272 (14)0.0077 (11)0.0060 (11)0.0051 (11)
C110.0294 (14)0.0248 (13)0.0257 (14)0.0067 (11)0.0017 (11)0.0000 (11)
C120.0299 (14)0.0283 (14)0.0233 (13)0.0150 (11)0.0038 (11)0.0031 (11)
C130.0293 (14)0.0277 (14)0.0296 (15)0.0109 (11)0.0091 (12)0.0069 (11)
C140.0276 (13)0.0227 (13)0.0271 (14)0.0078 (11)0.0037 (11)0.0017 (11)
C150.0498 (19)0.0454 (18)0.0279 (17)0.0184 (15)0.0118 (15)0.0014 (14)
C160.0398 (17)0.0259 (15)0.0469 (19)0.0079 (13)0.0182 (15)0.0024 (14)
C170.0318 (16)0.0336 (17)0.076 (3)0.0111 (14)0.0151 (17)0.0201 (18)

Geometric parameters (Å, °)

I—C122.094 (3)C9—C101.396 (4)
I—O2i3.145 (2)C9—C141.404 (4)
S—O21.486 (2)C10—C111.387 (4)
S—C11.766 (3)C10—H100.9300
S—C171.780 (4)C11—C121.390 (4)
O1—C71.379 (3)C11—H110.9300
O1—C81.382 (3)C12—C131.401 (4)
C1—C81.364 (4)C13—C141.378 (4)
C1—C21.452 (4)C13—H130.9300
C2—C31.391 (4)C14—H140.9300
C2—C71.396 (4)C15—H15A0.9600
C3—C41.385 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.409 (4)C16—H16A0.9600
C4—C151.508 (4)C16—H16B0.9600
C5—C61.385 (4)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.385 (4)C17—H17B0.9600
C6—C161.505 (4)C17—H17C0.9600
C8—C91.459 (4)
C12—I—O2i164.01 (9)C11—C10—H10119.9
O2—S—C1107.81 (13)C9—C10—H10119.9
O2—S—C17105.98 (17)C10—C11—C12120.1 (3)
C1—S—C1799.04 (15)C10—C11—H11119.9
C7—O1—C8106.5 (2)C12—C11—H11119.9
C8—C1—C2107.5 (2)C11—C12—C13120.3 (3)
C8—C1—S123.8 (2)C11—C12—I119.8 (2)
C2—C1—S127.1 (2)C13—C12—I119.8 (2)
C3—C2—C7119.0 (3)C14—C13—C12119.4 (3)
C3—C2—C1136.5 (3)C14—C13—H13120.3
C7—C2—C1104.5 (2)C12—C13—H13120.3
C4—C3—C2119.1 (3)C13—C14—C9120.9 (3)
C4—C3—H3120.5C13—C14—H14119.5
C2—C3—H3120.5C9—C14—H14119.5
C3—C4—C5119.4 (3)C4—C15—H15A109.5
C3—C4—C15120.7 (3)C4—C15—H15B109.5
C5—C4—C15119.9 (3)H15A—C15—H15B109.5
C6—C5—C4123.4 (3)C4—C15—H15C109.5
C6—C5—H5118.3H15A—C15—H15C109.5
C4—C5—H5118.3H15B—C15—H15C109.5
C7—C6—C5114.7 (3)C6—C16—H16A109.5
C7—C6—C16122.2 (3)C6—C16—H16B109.5
C5—C6—C16123.0 (3)H16A—C16—H16B109.5
O1—C7—C6124.7 (3)C6—C16—H16C109.5
O1—C7—C2110.9 (2)H16A—C16—H16C109.5
C6—C7—C2124.4 (3)H16B—C16—H16C109.5
C1—C8—O1110.5 (2)S—C17—H17A109.5
C1—C8—C9134.5 (3)S—C17—H17B109.5
O1—C8—C9115.0 (2)H17A—C17—H17B109.5
C10—C9—C14119.2 (3)S—C17—H17C109.5
C10—C9—C8121.0 (3)H17A—C17—H17C109.5
C14—C9—C8119.8 (2)H17B—C17—H17C109.5
C11—C10—C9120.1 (3)
O2—S—C1—C8120.8 (3)C1—C2—C7—O10.7 (3)
C17—S—C1—C8−129.1 (3)C3—C2—C7—C60.5 (4)
O2—S—C1—C2−43.3 (3)C1—C2—C7—C6−178.1 (3)
C17—S—C1—C266.8 (3)C2—C1—C8—O10.1 (3)
C8—C1—C2—C3−178.7 (3)S—C1—C8—O1−166.67 (19)
S—C1—C2—C3−12.5 (5)C2—C1—C8—C9179.4 (3)
C8—C1—C2—C7−0.5 (3)S—C1—C8—C912.6 (5)
S—C1—C2—C7165.7 (2)C7—O1—C8—C10.4 (3)
C7—C2—C3—C4−0.3 (4)C7—O1—C8—C9−179.1 (2)
C1—C2—C3—C4177.8 (3)C1—C8—C9—C1027.6 (5)
C2—C3—C4—C50.3 (4)O1—C8—C9—C10−153.1 (3)
C2—C3—C4—C15−179.4 (3)C1—C8—C9—C14−153.4 (3)
C3—C4—C5—C6−0.6 (5)O1—C8—C9—C1425.9 (4)
C15—C4—C5—C6179.1 (3)C14—C9—C10—C110.8 (4)
C4—C5—C6—C70.7 (4)C8—C9—C10—C11179.8 (3)
C4—C5—C6—C16−178.9 (3)C9—C10—C11—C12−0.8 (4)
C8—O1—C7—C6178.1 (3)C10—C11—C12—C130.4 (4)
C8—O1—C7—C2−0.7 (3)C10—C11—C12—I−175.5 (2)
C5—C6—C7—O1−179.4 (3)C11—C12—C13—C14−0.1 (4)
C16—C6—C7—O10.2 (5)I—C12—C13—C14175.8 (2)
C5—C6—C7—C2−0.7 (4)C12—C13—C14—C90.2 (4)
C16—C6—C7—C2178.9 (3)C10—C9—C14—C13−0.5 (4)
C3—C2—C7—O1179.3 (2)C8—C9—C14—C13−179.5 (3)

Symmetry codes: (i) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16B···O10.962.552.975 (4)107
C16—H16A···O2ii0.962.393.288 (4)156
C17—H17B···O1iii0.962.513.422 (4)159

Symmetry codes: (ii) x, y+1, z; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2115).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography