PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1170.
Published online 2008 May 30. doi:  10.1107/S1600536808015419
PMCID: PMC2961514

1,5-Dimethyl-4-[(5-methyl-2-furyl)­methyl­ene­amino]-2-phenyl-1H-pyrazol-3(2H)-one

Abstract

In the title compound, C17H17N3O2, a derivative of 4-amino­anti­pyrine, the structure displays a trans configuration with respect to the imine C=N double bond. The pyrazoline ring is essentially planar and makes a dihedral angle of 55.80 (1)° with the phenyl ring.

Related literature

For related literature, see: Ali et al. (2002 [triangle]); Allen et al. (1987 [triangle]); Carlton et al. (1995 [triangle]); Coolen et al. (1999 [triangle]); Cukurovali et al. (2002 [triangle]); Greisen & Andreasen (1976 [triangle]); Jiang et al. (2000 [triangle]); Liang et al. (2002 [triangle]); Tarafder et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1170-scheme1.jpg

Experimental

Crystal data

  • C17H17N3O2
  • M r = 295.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1170-efi1.jpg
  • a = 11.811 (7) Å
  • b = 9.997 (6) Å
  • c = 14.116 (9) Å
  • β = 110.963 (9)°
  • V = 1556.4 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.40 × 0.40 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.967, T max = 0.967
  • 5012 measured reflections
  • 2670 independent reflections
  • 1904 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.154
  • S = 1.07
  • 2670 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015419/bq2080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015419/bq2080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for the support of a special research grant (No. 05jk136) of the Education Department of Shaanxi Province.

supplementary crystallographic information

Comment

In recent years, the role of antipyrine and antipyridine derivatives in biological processes have become a topic of study (Carlton et al., 1995; Coolen et al., 1999; Jiang et al., 2000). Antipyrine is an antipyretic drug that is still being used to measure the total hepatic oxidase activity. The properties of antipyrine make it a suitable marker for oxidative stress (Greisen & Andereasen, 1976). Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). These properties stimulated our interest in this field. Crystals of the title compound, (I), were obtained as a new antipyrine Schiff base compound.

The perspective view of the structure and a packing diagram of (I) are illustrated in Fig.1 and 2, respectively. All the bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those observed in a similar antipyrine Schiff base (Liang et al., 2002). As seen from Fig. 1, the pyrazoline ring is essentially planar. Atom O2 deviates from the pyrazoline mean plane by -0.117 (5) Å, whereas atoms C10 and C11 by 0.115 (7) and 0.582 (7) Å, on the same side. The dihedral angle between the pyrazoline ring and the C12—C17 phenyl ring is 55.80 (1) °. The furan ring and the pyrazoline ring are approximately coplanar with the dihedral angle between them of 4.79 (2) °. As expected, the molecular structure adopts a trans configuration about the C6═N1 bond.

Experimental

A mixture of 5-methyl-2-furaldehyd (0.1 mmol, 11.0 mg) and 4-aminoantipyrine (0.1 mmol, 20.3 mg) was dissolved in 10 ml methanol, and stirred for about 30 min at room temperature to give a clear yellow solution. After keeping this solution in air for 7 d, yellow block crystals were formed at the bottom of vessel by slowly evaporating the solvent.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Figures

Fig. 1.
The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
Fig. 2.
The molecular packing of (I) viewed along the b-axis.

Crystal data

C17H17N3O2F000 = 624
Mr = 295.34Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3656 reflections
a = 11.811 (7) Åθ = 2.6–27.1º
b = 9.997 (6) ŵ = 0.09 mm1
c = 14.116 (9) ÅT = 296 K
β = 110.963 (9)ºBlock, yellow
V = 1556.4 (16) Å30.40 × 0.40 × 0.40 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2670 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.097
T = 296 Kθmax = 25.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −4→14
Tmin = 0.967, Tmax = 0.967k = −11→9
5012 measured reflectionsl = −16→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066  w = 1/[σ2(Fo2) + (0.0438P)2 + 0.5447P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.17 e Å3
2670 reflectionsΔρmin = −0.17 e Å3
203 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.46426 (15)−0.0177 (2)0.11946 (13)0.0512 (6)
O20.10583 (17)0.3027 (2)0.15207 (15)0.0696 (7)
N10.23169 (19)0.0950 (2)0.05296 (15)0.0455 (6)
N2−0.07371 (19)0.1894 (2)−0.08553 (15)0.0486 (6)
N3−0.05032 (19)0.2766 (3)−0.00250 (16)0.0519 (7)
C70.1172 (2)0.1547 (3)0.01786 (18)0.0433 (7)
C10.5813 (2)−0.0571 (3)0.1754 (2)0.0488 (7)
C80.0317 (2)0.1251 (3)−0.07436 (18)0.0449 (7)
C100.0408 (3)0.0357 (3)−0.15564 (19)0.0576 (8)
H4A0.04150.0887−0.21210.086*
H4B−0.0275−0.0238−0.17730.086*
H4C0.1143−0.0154−0.12990.086*
C60.3099 (2)0.1276 (3)0.1398 (2)0.0547 (8)
H50.28840.19060.17880.066*
C90.0665 (2)0.2508 (3)0.0669 (2)0.0486 (7)
C20.6170 (3)0.0008 (4)0.2668 (2)0.0621 (9)
H70.6913−0.01100.31910.075*
C12−0.1484 (3)0.3267 (3)0.02341 (19)0.0511 (8)
C40.4294 (2)0.0702 (3)0.1788 (2)0.0525 (8)
C13−0.2464 (3)0.2472 (4)0.0175 (2)0.0605 (9)
H10−0.25090.1595−0.00540.073*
C30.5208 (3)0.0835 (4)0.2690 (2)0.0704 (10)
H110.52060.13710.32270.084*
C15−0.3310 (4)0.4306 (5)0.0795 (3)0.0885 (14)
H12−0.39290.46620.09780.106*
C17−0.1411 (3)0.4580 (4)0.0576 (2)0.0673 (9)
H13−0.07500.51130.06150.081*
C50.6407 (3)−0.1481 (4)0.1252 (2)0.0652 (9)
H14A0.7193−0.17260.17220.098*
H14B0.6492−0.10380.06780.098*
H14C0.5921−0.22700.10290.098*
C11−0.1602 (3)0.2351 (4)−0.1828 (2)0.0852 (13)
H15A−0.13210.3176−0.20150.128*
H15B−0.23780.2492−0.17690.128*
H15C−0.16750.1688−0.23380.128*
C14−0.3378 (3)0.2996 (5)0.0461 (2)0.0763 (11)
H16−0.40390.24680.04290.092*
C16−0.2332 (4)0.5077 (4)0.0854 (3)0.0879 (13)
H17−0.22880.59530.10860.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0387 (11)0.0633 (14)0.0496 (10)0.0038 (10)0.0134 (8)−0.0004 (10)
O20.0511 (13)0.0848 (17)0.0624 (13)0.0078 (12)0.0077 (10)−0.0311 (12)
N10.0359 (13)0.0542 (16)0.0473 (12)−0.0030 (11)0.0159 (10)−0.0022 (11)
N20.0441 (14)0.0550 (16)0.0423 (12)0.0061 (12)0.0099 (10)−0.0064 (11)
N30.0401 (13)0.0561 (16)0.0545 (13)0.0049 (12)0.0106 (10)−0.0120 (12)
C70.0361 (15)0.0492 (18)0.0442 (14)−0.0031 (13)0.0139 (11)−0.0025 (13)
C10.0309 (15)0.057 (2)0.0583 (16)0.0012 (13)0.0153 (12)0.0114 (14)
C80.0445 (16)0.0485 (18)0.0441 (14)−0.0002 (14)0.0186 (12)0.0029 (13)
C100.0570 (19)0.067 (2)0.0473 (15)0.0056 (17)0.0167 (13)−0.0030 (15)
C60.0446 (17)0.065 (2)0.0531 (16)0.0048 (15)0.0158 (13)−0.0141 (15)
C90.0405 (16)0.0509 (18)0.0517 (15)0.0003 (14)0.0130 (12)−0.0094 (14)
C20.0388 (16)0.073 (2)0.0631 (18)−0.0015 (17)0.0039 (13)−0.0026 (17)
C120.0445 (17)0.054 (2)0.0485 (15)0.0101 (15)0.0083 (12)0.0002 (14)
C40.0373 (16)0.062 (2)0.0562 (16)−0.0004 (14)0.0146 (13)−0.0091 (15)
C130.0462 (18)0.067 (2)0.0596 (17)0.0060 (17)0.0080 (14)−0.0076 (16)
C30.0514 (19)0.086 (3)0.0624 (18)0.0040 (19)0.0064 (15)−0.0222 (18)
C150.060 (2)0.128 (4)0.076 (2)0.039 (3)0.0220 (18)−0.011 (2)
C170.068 (2)0.055 (2)0.076 (2)0.0100 (18)0.0231 (17)−0.0030 (17)
C50.0510 (18)0.081 (3)0.0661 (18)0.0154 (18)0.0237 (15)0.0138 (18)
C110.084 (2)0.101 (3)0.0503 (17)0.032 (2)−0.0009 (17)−0.0012 (19)
C140.0406 (19)0.113 (4)0.069 (2)0.010 (2)0.0120 (15)−0.005 (2)
C160.097 (3)0.075 (3)0.090 (3)0.035 (3)0.030 (2)−0.009 (2)

Geometric parameters (Å, °)

O1—C41.375 (3)C2—H70.9300
O1—C11.382 (3)C12—C131.382 (4)
O2—C91.237 (3)C12—C171.390 (4)
N1—C61.285 (3)C4—C31.349 (4)
N1—C71.397 (3)C13—C141.383 (5)
N2—C81.359 (3)C13—H100.9300
N2—N31.407 (3)C3—H110.9300
N2—C111.461 (3)C15—C161.366 (6)
N3—C91.401 (3)C15—C141.384 (6)
N3—C121.424 (4)C15—H120.9300
C7—C81.364 (3)C17—C161.375 (5)
C7—C91.435 (4)C17—H130.9300
C1—C21.337 (4)C5—H14A0.9600
C1—C51.475 (4)C5—H14B0.9600
C8—C101.488 (4)C5—H14C0.9600
C10—H4A0.9600C11—H15A0.9600
C10—H4B0.9600C11—H15B0.9600
C10—H4C0.9600C11—H15C0.9600
C6—C41.438 (4)C14—H160.9300
C6—H50.9300C16—H170.9300
C2—C31.414 (4)
C4—O1—C1106.9 (2)C17—C12—N3117.8 (3)
C6—N1—C7120.3 (2)C3—C4—O1109.0 (3)
C8—N2—N3107.33 (19)C3—C4—C6131.8 (3)
C8—N2—C11124.1 (2)O1—C4—C6119.2 (2)
N3—N2—C11116.8 (2)C12—C13—C14119.3 (3)
C9—N3—N2108.6 (2)C12—C13—H10120.4
C9—N3—C12124.9 (2)C14—C13—H10120.4
N2—N3—C12119.8 (2)C4—C3—C2107.5 (3)
C8—C7—N1122.5 (2)C4—C3—H11126.3
C8—C7—C9108.2 (2)C2—C3—H11126.3
N1—C7—C9129.3 (2)C16—C15—C14120.0 (4)
C2—C1—O1109.5 (3)C16—C15—H12120.0
C2—C1—C5133.7 (3)C14—C15—H12120.0
O1—C1—C5116.8 (2)C16—C17—C12118.9 (4)
N2—C8—C7110.0 (2)C16—C17—H13120.5
N2—C8—C10120.7 (2)C12—C17—H13120.5
C7—C8—C10129.3 (3)C1—C5—H14A109.5
C8—C10—H4A109.5C1—C5—H14B109.5
C8—C10—H4B109.5H14A—C5—H14B109.5
H4A—C10—H4B109.5C1—C5—H14C109.5
C8—C10—H4C109.5H14A—C5—H14C109.5
H4A—C10—H4C109.5H14B—C5—H14C109.5
H4B—C10—H4C109.5N2—C11—H15A109.5
N1—C6—C4122.4 (3)N2—C11—H15B109.5
N1—C6—H5118.8H15A—C11—H15B109.5
C4—C6—H5118.8N2—C11—H15C109.5
O2—C9—N3122.4 (3)H15A—C11—H15C109.5
O2—C9—C7132.3 (2)H15B—C11—H15C109.5
N3—C9—C7105.2 (2)C13—C14—C15120.1 (4)
C1—C2—C3107.2 (3)C13—C14—H16120.0
C1—C2—H7126.4C15—C14—H16120.0
C3—C2—H7126.4C15—C16—C17121.1 (4)
C13—C12—C17120.7 (3)C15—C16—H17119.5
C13—C12—N3121.6 (3)C17—C16—H17119.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2080).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347. [PubMed]
  • Coolen, S. A. J., Everaerts, F. M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103–113.
  • Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem.27, 171–176.
  • Greisen, G. & Andreasen, P. B. (1976). Acta Pharmacol. Toxicol.38, 49–58. [PubMed]
  • Jiang, S. X., Bayón, J. E., Ferre, I., Mao, X. Z. & González-Gallego, J. (2000). Vet. Parasitology, 88, 177–186. [PubMed]
  • Liang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem.27, 454–457.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547–2554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography