PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): i30–i31.
Published online 2008 May 7. doi:  10.1107/S1600536808009719
PMCID: PMC2961512

Disodium zinc bis­(sulfate) tetra­hydrate (zinc astrakanite) revisited

Abstract

We present a new low-temperature refinement of disodium zinc bis­(sulfate) tetra­hydrate {systematic name: poly[tetra-μ-aqua-di-μ-sulfato-zinc(II)disodium(I)]}, [Na2Zn(SO4)2(H2O)4]n or Zn astrakanite, which is an upgrade of previously reported data [Bukin & Nozik (1974 [triangle]). Zh. Strukt. Khim. 15, 712–716]. The compound is part of an isostructural family containing the Mg (the original astrakanite mineral), Co and Ni species. The very regular ZnO(aqua)4O(sulfate)2 octa­hedra lie on centres of symmetry, while the rather distorted NaO(aqua)2O(sulfate)4 octa­hedra appear at general positions, linked into a three-dimensional network by the bridging water mol­ecules and the fully coordinated sulfate groups.

Related literature

For related literature, see: Rumanova (1958 [triangle]); Giglio (1958 [triangle]); Bukin & Nozik (1974 [triangle], 1975 [triangle]); Díaz de Vivar et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00i30-scheme1.jpg

Experimental

Crystal data

  • [Na2Zn(SO4)2(H2O)4]
  • M r = 375.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i30-efi9.jpg
  • a = 5.5075 (2) Å
  • b = 8.2127 (3) Å
  • c = 11.0559 (4) Å
  • β = 99.958 (10)°
  • V = 492.54 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.07 mm−1
  • T = 170 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.452, T max = 0.728
  • 3533 measured reflections
  • 1080 independent reflections
  • 1062 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.054
  • S = 1.00
  • 1080 reflections
  • 96 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009719/fi2061sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009719/fi2061Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Spanish Research Council (CSIC) for providing a free-of-charge licence to the Cambridge Structural Database (Allen, 2002 [triangle]).

supplementary crystallographic information

Comment

The original mineral astrakanite [Na2M(SO4)2(H2O)4], M = Mg, structurally characterized almost 50 years ago (Rumanova, 1958), gave its name to a whole isostructural family, of which some members have been known for a long while (M = Zn, Giglio, 1958; Bukin & Nozik, 1974; M = Co, Bukin & Nozik, 1975), while the Ni analogue has been only recently reported, (Díaz de Vivar et al., 2006). We present herein an improved, low temperature data refinement of the zinc member of the group, Na2Zn(SO4)2(H2O)4 (I), unwittingly obtained as a byproduct while looking for something else (See experimental section).

Fig. 1 shows the asymmetric unit of (I) as well as part of its close environment, and Table 1 presents some selected bond distances. The structure consists of ZnO(aqua)4O(sulf)2 and NaO(aqua)2O(sulf)4 octahedra in a 1:2 ratio, linked through two bridging water molecules (O1W, O2W) and the fully coordinated sulfato groups.

Zn cations lay on centers of symmetry and their coordination polyhedra defined by O3, O1w, O2w and their respective centrosymmetric counterparts are quite regular, possibly due to the large number of geometrically unconstrained aqua molecules (Parameters range: Zn—O,2.0636 (11)–2.1285 (11) Å; (O—Zn—O)cis, 87.38 (5)–92.62 (5)°; (O—Zn—O)trans, 180.°, fixed by symmetry). Na cations, instead, occupy general positions and, contrasting the former, their O(sulf)-rich coordination octahedra appear as quite irregular (Parameters range: Na—O,2.3603 (12)–2.5694 (13) Å; (O—Na—O)cis, 74.93 (4)–112.94 (4)°; (O—Na—O)trans, 155.87 (5)–162.11 (5)°).

The geometry of the sulfate anion is rather regular, with S—O distances in the range 1.4619 (11) to 1.4878 (11) Å and angles from 107.38 (5) to 110.89 (7)°. The group exhibits a complex µ54-O:O':O'':O''' coordination, binding in a monocoordinated fashion to Zn through O3 and to Na through O1 and O4, while bridging two Na cations through O2. The result of this intricate interconnectivity is the formation of broad two-dimensional structures parallel to (100) containing both types of polyhedra (Fig.1) and internally linked by the two bridging aqua and O atoms O1, O2 and O3 from the sulfate anion.

These "planes", in turn, are interconnected along a single "strong" interaction, the O4—Na1 bonds between sulfate O4 atoms from a given layer and Na1 cations from their neighbours (Fig. 2).

Also H-bonding interactions (Table 2) contribute to the intraplane (via O1W, entries 1 and 2) and interplane (via O2W, entries 3 and 4) cohesion.

It is worth noting that O1 and O4 act as the only (double) acceptors for H-bonding. In analyzing the S—O bond lengths, it appears that S1—O1 and S1—O4 present precisely the longest distances suggesting a slight weakening effect on the S—O covalent link due to the oxygen involvement in H interactions.

Even though the isostructural character of (I) with the rest of the strakanite family is obvious by inspection, the low precision with which the Mn and Co members have been reported leaves comparison with the Ni moiety as the only relevant one. In this respect, both structures are almost undistinguishable, as proved by the least squares fit of the extended group shown in Fig. 3, where the maximum departure amounts for less than 0.05Å for atom O2W.

Experimental

The compound was obtained an an unintended product in a synthesis of Zn(II) complexes. Recently prepared anysaldehyde bisulfitic derivative (60 mg) were dissolved in 5 ml of water and mixed with an aqueous solution of Zn acetate (112 mg/5 ml). The aqueous mixture was left in a methanol atmosphere, until colourless cubic crystals were obtained.

Refinement

Hydrogen atoms pertaining to water molecules were found in the difference- Fourier synthesis and refined with restrained O—H:0.82 (2) Å, H···H:1.35 (2) Å, but free isotropic displacement parameters.

Figures

Fig. 1.
A (100) view of the structure with the independent atoms drawn in full 50% displacemenet ellipsoids and full bonds. The symmetry related part, in open ellipsoids and hollow bonds. Hydrogen interactions drawn in broken lines. Symmetry codes: (i) x, -y ...
Fig. 2.
Packing view down the <010> direction showing a side view of the planar structures, and the way they interact through the O4—Na1 bonds along [100]. H-bonds omited in this view, for clarity.
Fig. 3.
Least squares fit of an extended atomic group in (I), in full lining, and its Ni counterpart (Díaz de Vivar et al., 2006), in dashed lining. Note the almost perfect overlap of both structures.

Crystal data

[Na2Zn(SO4)2(H2O)4]F000 = 376
Mr = 375.53Dx = 2.539 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3942 reflections
a = 5.5075 (2) Åθ = 3.8–26.7º
b = 8.2127 (3) ŵ = 3.07 mm1
c = 11.0559 (4) ÅT = 170 (2) K
β = 99.9580 (10)ºPrism, colourless
V = 492.54 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1080 independent reflections
Radiation source: fine-focus sealed tube1062 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.012
T = 170(2) Kθmax = 27.9º
[var phi] and ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.452, Tmax = 0.728k = −10→10
3533 measured reflectionsl = −13→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054  w = 1/[σ2(Fo2) + (0.0408P)2 + 0.265P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1080 reflectionsΔρmax = 0.29 e Å3
96 parametersΔρmin = −0.53 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.080 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.00000.00000.00000.00887 (13)
Na10.12607 (11)0.07173 (8)0.36217 (5)0.01231 (17)
S10.37405 (6)0.28842 (4)0.13609 (3)0.00821 (14)
O10.3516 (2)0.27120 (14)0.26765 (10)0.0127 (2)
O20.2085 (2)0.41630 (14)0.07871 (10)0.0136 (3)
O30.3186 (2)0.13129 (14)0.07174 (10)0.0134 (2)
O40.63500 (19)0.32955 (13)0.13056 (10)0.0127 (2)
O1W−0.1247 (2)0.03807 (16)0.16331 (10)0.0110 (2)
O2W0.1753 (2)−0.21442 (13)0.08065 (10)0.0115 (2)
H1WA−0.215 (5)−0.032 (3)0.179 (2)0.028 (7)*
H1WB−0.207 (4)0.123 (2)0.156 (2)0.023 (6)*
H2WA0.299 (4)−0.203 (3)0.1341 (18)0.021 (6)*
H2WB0.213 (5)−0.278 (3)0.032 (2)0.034 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01021 (18)0.00753 (17)0.00909 (17)−0.00024 (7)0.00231 (11)−0.00054 (7)
Na10.0133 (3)0.0116 (3)0.0118 (3)−0.0002 (2)0.0015 (2)0.0005 (2)
S10.0083 (2)0.0075 (2)0.0089 (2)0.00016 (12)0.00150 (13)−0.00049 (12)
O10.0156 (6)0.0130 (5)0.0101 (5)0.0014 (4)0.0034 (4)0.0013 (4)
O20.0149 (5)0.0139 (6)0.0119 (5)0.0051 (4)0.0017 (4)0.0017 (4)
O30.0111 (5)0.0109 (5)0.0179 (5)−0.0016 (4)0.0022 (4)−0.0054 (4)
O40.0103 (5)0.0110 (5)0.0176 (5)−0.0021 (4)0.0042 (4)−0.0016 (4)
O1W0.0114 (5)0.0098 (5)0.0122 (5)0.0000 (4)0.0035 (4)0.0002 (4)
O2W0.0120 (5)0.0100 (5)0.0118 (5)0.0007 (4)−0.0002 (4)−0.0017 (4)

Geometric parameters (Å, °)

Zn1—O1Wi2.0636 (11)Na1—O2Wv2.5694 (13)
Zn1—O1W2.0636 (11)Na1—Na1vi3.7507 (12)
Zn1—O32.0952 (11)S1—O21.4619 (11)
Zn1—O3i2.0952 (11)S1—O31.4797 (11)
Zn1—O2W2.1285 (11)S1—O11.4876 (11)
Zn1—O2Wi2.1285 (11)S1—O41.4878 (11)
Na1—O2ii2.3603 (12)O1W—H1WA0.800 (17)
Na1—O4iii2.3786 (12)O1W—H1WB0.832 (16)
Na1—O12.4016 (12)O2W—H2WA0.826 (16)
Na1—O1W2.4017 (12)O2W—H2WB0.805 (16)
Na1—O2iv2.4224 (13)
O1Wi—Zn1—O1W180.00 (9)O1—Na1—O2Wv92.61 (4)
O1Wi—Zn1—O391.46 (4)O1W—Na1—O2Wv90.58 (4)
O1W—Zn1—O388.54 (4)O2iv—Na1—O2Wv74.93 (4)
O1Wi—Zn1—O3i88.54 (4)O2—S1—O3110.89 (7)
O1W—Zn1—O3i91.46 (4)O2—S1—O1109.97 (6)
O3—Zn1—O3i180.00 (8)O3—S1—O1110.00 (7)
O1Wi—Zn1—O2W92.62 (5)O2—S1—O4110.71 (7)
O1W—Zn1—O2W87.38 (5)O3—S1—O4107.38 (6)
O3—Zn1—O2W88.72 (4)O1—S1—O4107.81 (7)
O3i—Zn1—O2W91.28 (4)S1—O1—Na1128.83 (7)
O1Wi—Zn1—O2Wi87.38 (5)S1—O2—Na1vii117.79 (6)
O1W—Zn1—O2Wi92.62 (5)S1—O2—Na1v135.07 (7)
O3—Zn1—O2Wi91.28 (4)Na1vii—O2—Na1v103.29 (4)
O3i—Zn1—O2Wi88.72 (4)S1—O3—Zn1136.09 (7)
O2W—Zn1—O2Wi180.00 (7)S1—O4—Na1viii136.15 (7)
O2ii—Na1—O4iii89.56 (4)Zn1—O1W—Na1126.34 (5)
O2ii—Na1—O1112.94 (4)Zn1—O1W—H1WA113 (2)
O4iii—Na1—O1105.09 (4)Na1—O1W—H1WA99.6 (19)
O2ii—Na1—O1W155.87 (5)Zn1—O1W—H1WB107.7 (17)
O4iii—Na1—O1W99.32 (5)Na1—O1W—H1WB102.0 (17)
O1—Na1—O1W86.50 (4)H1WA—O1W—H1WB106 (2)
O2ii—Na1—O2iv76.71 (4)Zn1—O2W—Na1iv113.77 (5)
O4iii—Na1—O2iv89.57 (4)Zn1—O2W—H2WA117.7 (16)
O1—Na1—O2iv162.11 (5)Na1iv—O2W—H2WA112.8 (17)
O1W—Na1—O2iv80.94 (4)Zn1—O2W—H2WB114.1 (18)
O2ii—Na1—O2Wv75.00 (4)Na1iv—O2W—H2WB89 (2)
O4iii—Na1—O2Wv160.12 (5)H2WA—O2W—H2WB106 (2)

Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x, y+1/2, −z+1/2; (vi) −x, −y, −z+1; (vii) x, −y+1/2, z−1/2; (viii) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iv0.800 (17)1.916 (17)2.6977 (17)165 (3)
O1W—H1WB···O4ix0.832 (16)1.901 (16)2.7288 (17)173 (2)
O2W—H2WA···O1iii0.826 (16)2.051 (18)2.8468 (16)162 (2)
O2W—H2WB···O4x0.805 (16)2.15 (2)2.8779 (16)151 (3)

Symmetry codes: (iv) −x, y−1/2, −z+1/2; (ix) x−1, y, z; (iii) −x+1, y−1/2, −z+1/2; (x) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2061).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (2001). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bukin, V. I. & Nozik, Yu. Z. (1974). Zh. Strukt. Khim.15, 712–716.
  • Bukin, V. I. & Nozik, Yu. Z. (1975). Kristallografiya, 20, 293–296.
  • Díaz de Vivar, M. E. de, Baggio, S., Garland, M. T. & Baggio, R. (2006). Acta Cryst. E62, i196–i198.
  • Giglio, M. (1958). Naturwissenschaften, 45, 82–83.
  • Rumanova, I. M. (1958). Dokl. Akad. Nauk SSSR, 118, 84–87.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography