PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m803.
Published online 2008 May 10. doi:  10.1107/S1600536808013809
PMCID: PMC2961504

Dichloridobis(di-tert-butyl­methyl­phosphine oxide-κO)diphenyl­tin(IV)

Abstract

The complete mol­ecule of the title compound, [Sn(C6H5)2Cl2(C9H21OP)2], is generated by crystallographic inversion symmetry, the Sn atom is located on a special position of site symmetry An external file that holds a picture, illustration, etc.
Object name is e-64-0m803-efi1.jpg. The Sn atom adopts an all-trans SnC2O2Cl2 octa­hedral geometry. As a consequence of the bulky substituents at the O atom, the P—O—Sn bond angle is 163.9 (3)°.

Related literature

For related literature, see: Lerner et al. (2005 [triangle]); Ruth et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m803-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2Cl2(C9H21OP)2]
  • M r = 696.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m803-efi2.jpg
  • a = 12.1782 (19) Å
  • b = 9.0866 (8) Å
  • c = 16.339 (2) Å
  • β = 111.518 (11)°
  • V = 1682.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 173 (2) K
  • 0.13 × 0.09 × 0.07 mm

Data collection

  • Stoe IPDSII two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2003 [triangle]; Blessing, 1995 [triangle]) T min = 0.877, T max = 0.931
  • 11731 measured reflections
  • 3145 independent reflections
  • 1754 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.098
  • S = 0.88
  • 3145 reflections
  • 169 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013809/hb2731sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013809/hb2731Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

We are interested in Lewis-acidic Sn(IV) compounds and their reactivity towards Lewis bases. Recently we have reported the synthesis and structure of {Zn[Sn(CH2SMe)4]0.5Cl2}n and Sn(CH2PPh2)4 (Ruth et al., 2007). In contrast to [SnCl4].[CH3SCH3]2 which forms an adduct in solid state with a six-coordinated Sn atom (Ruth et al., 2005), the Sn(IV) centers in {Zn[Sn(CH2SMe)4]0.5Cl2}n and Sn(CH2PPh2)4 are tetra-coordinated. However, Me3SnCl forms an adduct with Me3SnOH and H2O in which the Sn atoms possess the coordination number five. It is interesting to note that this adduct represents an intermediate in Me3SnCl hydrolysis (Lerner et al., 2005). We report here the X-ray crystal structure analysis of the title adduct [Ph2SnCl2].[tBu2MePO]2, (I). The synthesis of (I) was achieved by treatment of Ph2SnCl2 with two equivalents of tBu2MePO as indicated in the equation below.

Compound (I) has crystallographic inversion symmetry with just half a molecule in the asymmetric unit. The Sn atom is hexacoordinated by three pairs of different ligands in an octahedral fashion (Table 1). All ligand pairs of the same kind are mutually trans at the Sn atom (Fig. 1). As a consequence of the bulky substituents at the O atom the P—O—Sn angle is enlarged to 163.9 (3)°.

Experimental

tBu2MePO (2.05 mmol) was added with stirring at ambient temperature to a solution of Ph2SnCl2 (0.58 mmol) in 25 ml THF. Colourless blocks of (I) were grown by storing this solution at room temperature for several weeks.

Refinement

The H atoms were geometrically positioned (C—H = 0.95-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.
Perspective view of (I) with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry operator for generating equivalent atoms: (A) 1 - x, 1 - y, 1 - z.

Crystal data

[Sn(C6H5)2Cl2(C9H21OP)2]F(000) = 724
Mr = 696.25Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4261 reflections
a = 12.1782 (19) Åθ = 3.5–25.4°
b = 9.0866 (8) ŵ = 1.04 mm1
c = 16.339 (2) ÅT = 173 K
β = 111.518 (11)°Block, colourless
V = 1682.0 (4) Å30.13 × 0.09 × 0.07 mm
Z = 2

Data collection

Stoe IPDSII two-circle diffractometer3145 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
graphiteRint = 0.087
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)h = −14→14
Tmin = 0.877, Tmax = 0.931k = −10→11
11731 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0102P)2] where P = (Fo2 + 2Fc2)/3
3145 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.50000.50000.50000.02649 (18)
Cl10.46725 (18)0.3097 (2)0.60405 (11)0.0361 (5)
P10.31774 (17)0.7748 (2)0.56073 (11)0.0271 (4)
O10.3737 (4)0.6468 (5)0.5312 (3)0.0300 (11)
C10.2236 (7)0.7021 (8)0.6188 (4)0.0340 (17)
C20.2381 (6)0.8878 (8)0.4633 (4)0.0337 (17)
C30.4234 (7)0.8947 (8)0.6369 (4)0.0360 (18)
H3A0.46840.83980.69030.054*
H3B0.38220.97680.65210.054*
H3C0.47740.93310.61000.054*
C110.3017 (7)0.5921 (9)0.6885 (5)0.043 (2)
H11A0.37210.64300.72820.064*
H11B0.32570.51140.65890.064*
H11C0.25680.55230.72250.064*
C120.1142 (8)0.6241 (10)0.5567 (5)0.058 (3)
H12A0.06560.69400.51260.086*
H12B0.06860.58500.59030.086*
H12C0.13800.54310.52730.086*
C130.1867 (8)0.8238 (9)0.6696 (5)0.045 (2)
H13A0.25740.87310.71010.068*
H13B0.14280.77980.70310.068*
H13C0.13660.89580.62790.068*
C210.1735 (8)0.7857 (10)0.3860 (5)0.054 (2)
H21A0.11370.72890.39940.081*
H21B0.23030.71820.37620.081*
H21C0.13510.84460.33290.081*
C220.3310 (6)0.9731 (9)0.4389 (4)0.036 (2)
H22A0.37441.03970.48710.054*
H22B0.29161.03040.38530.054*
H22C0.38620.90350.42880.054*
C230.1515 (7)0.9993 (15)0.4782 (5)0.064 (3)
H23A0.09180.94630.49380.096*
H23B0.11281.05580.42420.096*
H23C0.19501.06640.52610.096*
C410.3564 (7)0.4098 (7)0.3934 (4)0.0276 (16)
C420.2454 (7)0.3792 (8)0.3993 (5)0.0368 (18)
H420.23460.39830.45300.044*
C430.1523 (8)0.3224 (9)0.3291 (5)0.049 (2)
H430.07710.30990.33340.059*
C440.1696 (8)0.2832 (9)0.2512 (5)0.046 (2)
H440.10760.23880.20390.055*
C450.2763 (8)0.3097 (9)0.2440 (4)0.042 (2)
H450.28760.28450.19120.051*
C460.3695 (7)0.3738 (8)0.3140 (4)0.0347 (18)
H460.44240.39300.30740.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0255 (4)0.0305 (4)0.0254 (3)0.0007 (6)0.0116 (3)−0.0013 (5)
Cl10.0442 (12)0.0352 (11)0.0335 (9)−0.0015 (10)0.0198 (9)0.0010 (8)
P10.0226 (11)0.0324 (11)0.0262 (8)0.0000 (9)0.0086 (8)−0.0023 (8)
O10.031 (3)0.029 (3)0.033 (2)0.006 (2)0.015 (2)−0.002 (2)
C10.032 (5)0.037 (4)0.036 (4)−0.005 (4)0.017 (3)−0.010 (3)
C20.024 (4)0.045 (5)0.034 (4)0.001 (4)0.013 (3)−0.003 (3)
C30.032 (5)0.052 (5)0.025 (3)−0.003 (4)0.012 (3)0.000 (3)
C110.051 (6)0.039 (5)0.046 (4)−0.005 (4)0.027 (4)0.004 (4)
C120.055 (6)0.072 (7)0.058 (5)−0.030 (5)0.034 (5)−0.027 (5)
C130.048 (6)0.052 (5)0.046 (4)−0.006 (5)0.029 (4)−0.003 (4)
C210.038 (5)0.078 (7)0.036 (4)0.003 (5)0.002 (4)0.001 (4)
C220.034 (4)0.040 (6)0.039 (3)0.015 (4)0.018 (3)0.009 (4)
C230.057 (6)0.087 (6)0.059 (4)0.056 (8)0.033 (4)0.026 (7)
C410.036 (5)0.021 (4)0.021 (3)0.000 (3)0.004 (3)−0.004 (3)
C420.024 (4)0.047 (5)0.043 (4)−0.009 (4)0.017 (4)−0.013 (4)
C430.033 (5)0.052 (6)0.066 (5)0.000 (5)0.022 (4)0.000 (4)
C440.036 (5)0.041 (5)0.048 (4)−0.002 (4)0.003 (4)−0.006 (4)
C450.043 (5)0.047 (5)0.029 (4)−0.004 (4)0.004 (4)0.001 (3)
C460.036 (5)0.032 (5)0.035 (4)0.007 (4)0.012 (4)0.008 (3)

Geometric parameters (Å, °)

Sn1—C41i2.128 (7)C12—H12C0.9800
Sn1—C412.128 (7)C13—H13A0.9800
Sn1—O12.232 (4)C13—H13B0.9800
Sn1—O1i2.232 (4)C13—H13C0.9800
Sn1—Cl1i2.5567 (16)C21—H21A0.9800
Sn1—Cl12.5567 (16)C21—H21B0.9800
P1—O11.513 (4)C21—H21C0.9800
P1—C31.794 (7)C22—H22A0.9800
P1—C21.842 (7)C22—H22B0.9800
P1—C11.858 (7)C22—H22C0.9800
C1—C121.522 (10)C23—H23A0.9800
C1—C111.552 (10)C23—H23B0.9800
C1—C131.545 (9)C23—H23C0.9800
C2—C221.541 (10)C41—C461.402 (8)
C2—C211.533 (11)C41—C421.418 (10)
C2—C231.544 (11)C42—C431.383 (10)
C3—H3A0.9800C42—H420.9500
C3—H3B0.9800C43—C441.412 (10)
C3—H3C0.9800C43—H430.9500
C11—H11A0.9800C44—C451.367 (11)
C11—H11B0.9800C44—H440.9500
C11—H11C0.9800C45—C461.409 (10)
C12—H12A0.9800C45—H450.9500
C12—H12B0.9800C46—H460.9500
C41i—Sn1—C41180.0C1—C12—H12B109.5
C41i—Sn1—O190.6 (2)H12A—C12—H12B109.5
C41—Sn1—O189.4 (2)C1—C12—H12C109.5
C41i—Sn1—O1i89.4 (2)H12A—C12—H12C109.5
C41—Sn1—O1i90.6 (2)H12B—C12—H12C109.5
O1—Sn1—O1i180.0C1—C13—H13A109.5
C41i—Sn1—Cl1i90.10 (18)C1—C13—H13B109.5
C41—Sn1—Cl1i89.90 (18)H13A—C13—H13B109.5
O1—Sn1—Cl1i92.09 (12)C1—C13—H13C109.5
O1i—Sn1—Cl1i87.91 (12)H13A—C13—H13C109.5
C41i—Sn1—Cl189.90 (18)H13B—C13—H13C109.5
C41—Sn1—Cl190.10 (18)C2—C21—H21A109.5
O1—Sn1—Cl187.91 (12)C2—C21—H21B109.5
O1i—Sn1—Cl192.09 (12)H21A—C21—H21B109.5
Cl1i—Sn1—Cl1180.0C2—C21—H21C109.5
O1—P1—C3113.3 (3)H21A—C21—H21C109.5
O1—P1—C2108.0 (3)H21B—C21—H21C109.5
C3—P1—C2106.1 (3)C2—C22—H22A109.5
O1—P1—C1108.9 (3)C2—C22—H22B109.5
C3—P1—C1106.4 (3)H22A—C22—H22B109.5
C2—P1—C1114.3 (3)C2—C22—H22C109.5
P1—O1—Sn1163.9 (3)H22A—C22—H22C109.5
C12—C1—C11109.9 (7)H22B—C22—H22C109.5
C12—C1—C13109.6 (6)C2—C23—H23A109.5
C11—C1—C13106.7 (6)C2—C23—H23B109.5
C12—C1—P1112.3 (4)H23A—C23—H23B109.5
C11—C1—P1106.1 (5)C2—C23—H23C109.5
C13—C1—P1112.0 (5)H23A—C23—H23C109.5
C22—C2—C21107.1 (6)H23B—C23—H23C109.5
C22—C2—C23108.7 (7)C46—C41—C42116.8 (7)
C21—C2—C23110.7 (7)C46—C41—Sn1120.6 (5)
C22—C2—P1107.5 (5)C42—C41—Sn1122.6 (5)
C21—C2—P1108.9 (5)C43—C42—C41122.0 (6)
C23—C2—P1113.8 (4)C43—C42—H42119.0
P1—C3—H3A109.5C41—C42—H42119.0
P1—C3—H3B109.5C42—C43—C44119.6 (7)
H3A—C3—H3B109.5C42—C43—H43120.2
P1—C3—H3C109.5C44—C43—H43120.2
H3A—C3—H3C109.5C45—C44—C43119.6 (8)
H3B—C3—H3C109.5C45—C44—H44120.2
C1—C11—H11A109.5C43—C44—H44120.2
C1—C11—H11B109.5C44—C45—C46120.7 (7)
H11A—C11—H11B109.5C44—C45—H45119.6
C1—C11—H11C109.5C46—C45—H45119.6
H11A—C11—H11C109.5C41—C46—C45121.1 (7)
H11B—C11—H11C109.5C41—C46—H46119.4
C1—C12—H12A109.5C45—C46—H46119.4
C3—P1—O1—Sn1−21.3 (11)C1—P1—C2—C21−79.8 (6)
C2—P1—O1—Sn195.9 (10)O1—P1—C2—C23165.5 (7)
C1—P1—O1—Sn1−139.5 (9)C3—P1—C2—C23−72.7 (7)
C41i—Sn1—O1—P131.6 (10)C1—P1—C2—C2344.2 (8)
C41—Sn1—O1—P1−148.4 (10)O1—Sn1—C41—C46142.0 (5)
Cl1i—Sn1—O1—P1−58.5 (10)O1i—Sn1—C41—C46−38.0 (5)
Cl1—Sn1—O1—P1121.5 (10)Cl1i—Sn1—C41—C4649.9 (5)
O1—P1—C1—C12−69.5 (6)Cl1—Sn1—C41—C46−130.1 (5)
C3—P1—C1—C12168.1 (6)O1—Sn1—C41—C42−39.9 (6)
C2—P1—C1—C1251.4 (7)O1i—Sn1—C41—C42140.1 (6)
O1—P1—C1—C1150.5 (5)Cl1i—Sn1—C41—C42−132.0 (6)
C3—P1—C1—C11−71.9 (5)Cl1—Sn1—C41—C4248.0 (6)
C2—P1—C1—C11171.4 (5)C46—C41—C42—C43−2.7 (11)
O1—P1—C1—C13166.6 (5)Sn1—C41—C42—C43179.1 (6)
C3—P1—C1—C1344.2 (6)C41—C42—C43—C444.7 (12)
C2—P1—C1—C13−72.5 (6)C42—C43—C44—C45−3.8 (12)
O1—P1—C2—C22−74.1 (5)C43—C44—C45—C460.8 (12)
C3—P1—C2—C2247.7 (5)C42—C41—C46—C45−0.3 (10)
C1—P1—C2—C22164.5 (5)Sn1—C41—C46—C45178.0 (6)
O1—P1—C2—C2141.6 (6)C44—C45—C46—C411.2 (12)
C3—P1—C2—C21163.4 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2731).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Lerner, H.-W., Haghiri Ilkechi, A., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413–415.
  • Ruth, K., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, m1852–m1853.
  • Ruth, K., Müller, M., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2007). Z. Anorg. Allg. Chem.633, 1485–1489.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography