PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m799.
Published online 2008 May 10. doi:  10.1107/S1600536808013615
PMCID: PMC2961499

5-2,3-Bis(trimethylsilyl)-2,3-dicarba-nido-hexaborane(2−)]chlorido(N,N,N′,N′-tetramethylethylenediamine)dysprosium(III)

Abstract

The structure of the title compound, [Dy(C8H22B4Si2)Cl(C6H16N2)], reveals that a center of symmetry exists within the dimeric half-sandwich units. Within each half-sandwich, the DyIII ion is coordinated by the five-membered ring of the carborane, tetramethylethyl­enediamine and the chloride ion.

Related literature

For related literature, see: Bazan et al. (1993 [triangle]); Tomlinson et al. (2005 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m799-scheme1.jpg

Experimental

Crystal data

  • [Dy(C8H22B4Si2)Cl(C6H16N2)]
  • M r = 531.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m799-efi1.jpg
  • a = 11.4467 (8) Å
  • b = 14.862 (1) Å
  • c = 13.8615 (9) Å
  • β = 92.770 (1)°
  • V = 2355.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.39 mm−1
  • T = 293 (2) K
  • 0.80 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD PLATFORM diffractometer
  • Absorption correction: multi-scan SADABS (Sheldrick, 2006 [triangle]) T min = 0.257, T max = 0.362
  • 17271 measured reflections
  • 4151 independent reflections
  • 4142 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.050
  • S = 1.44
  • 4151 reflections
  • 231 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SMART and SAINT (Bruker, 2003 [triangle]); data reduction: SAINT (Bruker, 2003 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013615/si2081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013615/si2081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Northern Illinois University and by grants from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation. JAM thanks the Robert A. Welch Foundation (grant N-1322).

supplementary crystallographic information

Comment

The lanthanacarboranes (LnC2B4) cage systems are of interest in that their structural chemistry depends on the number and nature of the metal ligands other than the particular carborane. For example, the reaction of the tetrahydrofuran (THF) solvated dilithium compounds of B4C8H22Si22- with LnCl3 in 2:1 molar ratios produced exclusively a trinuclear clusters (Tomlinson et al. 2005, Wang et al. 2006, and literature cited therein). The methoxide and oxide ions were thought to be the result of a degradation of the THF molecules. This is consistent with the observation that the reaction of the TMEDA lithiacarboranes with LnCl3 in 2:1 molar ratios gave the expected full sandwich lanthanacarboranes. This tendency for TMEDA to disrupt complex aggregation and alter the course of a metalation reactions was also found in the d-block metals. The reaction of the THF solvated dilithium salts of B4C8H22Si22- with either CoCl2 or NiCl2 induced a metal disproportion reaction yielding commo-complexes and the respective metals. On the other hand, similar reactions with the TMEDA-solvated carborane dianions produced the corresponding closo-compound (Tomlinson et al. 2005). The reaction of a nido-compound with a number of lanthanide halides in 2:1 carborane-to-lanthanide molar ratios produced only the corresponding dimers (Wang et al. 2006). The presence of the reactive chlorides made these compounds potentially useful precursors in the syntheses of other lanthanacarboranes. Since dimer formation is thought to inhibit the reactions of the metallacatboranes (Bazan et al. 1993), the synthesis of a monomeric dysprosacarborane was attempted by the reaction of DyCl3 and the nido-compound, giving the title compound. The structure of the title compound, shown in Figure 1, is somewhat surprising in that it still remains a dimer. The structure consists of two half-sandwich units bridged at the B4, B5 positions by two pairs of B—H—Dy bonds. The average coordination bond distances (Å) are: Dy—Cl 2.5851 (9), Dy—N1 2.598 (3), Dy—N2 2.698 (3), Dy—B4,B5 2.728 (4), 2.692 (4), Dy-av(C1, C2, B3, B4, B5) 2.720 and the corresponding bond angles (°) are Cl—Dy—N1 95.98 (7), Cl—Dy—B5 143.74 (8), N(1)—Dy—N(2) 68.3 (1), B(5)—Dy—B(4) 35.7 (1). The Dy-av(C2B3) distance of 2.712Å and the Dy—Cl distance of 2.5851 (9) Å in the structure are similar to the values of 2.717 Å and 2.5757 (14) Å, respectively, found in anther Dy compound (Wang et al. 2006). This is one of the few instances where the substitution of THF by TMEDA molecules does not change either the cluster or intermolecular geometries.

Experimental

The reaction of DyCl3 with the TMEDA solvated monosodium nido- compound, nido-1-Na(TMEDA)2–2,3-(SiMe3)2-2,3-C2B4H4, in a 1:2 molar ratio in dry benzene at 60° C produced the corresponding half sandwich carborane in 88% yield.

Refinement

The hydrogen atoms on carbon atoms were refined using the riding model in SHELXL with the Uiso equal to 1.5 times of that of the preceding carbon atoms for the methyl groups and 1.3 times for the rings. The C—H distances are equal to 0.97 and 0.96 Å for the CH2 and CH3 groups, respectively. The hydrogen atoms attached to boron atoms were located using the difference map, those of the carborane ring were refined using the riding model with B—H distances 0.93 Å. The hydrogen atom attached to B6 was refined with an isotropic displacement parameter with B—H distance 0.96 Å. The Uiso(H) = 1.2 times Ueq(B3,B4,B5).

Figures

Fig. 1.
Thermal ellipsoid drawing of the title compound shown at the 30% probability level. Atoms of the symmetry related moiety of the dimer complex are indicated "A" (symmetry code 1 - x, 2 - y, 1 - z).
Fig. 2.
Reaction scheme

Crystal data

[Dy(C8H22B4Si2)Cl(C6H16N2)]F000 = 1068
Mr = 531.84Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 562 reflections
a = 11.4467 (8) Åθ = −14–14º
b = 14.8624 (10) ŵ = 3.39 mm1
c = 13.8615 (9) ÅT = 293 (2) K
β = 92.7700 (10)ºColumn, colorless
V = 2355.4 (3) Å30.80 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD PLATFORM diffractometer4151 independent reflections
Radiation source: fine-focus sealed tube4142 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 25.0º
T = 293(2) Kθmin = 2.0º
ω scansh = −13→13
Absorption correction: multi-scanSADABS (Sheldrick, 2006)k = −17→17
Tmin = 0.257, Tmax = 0.362l = −16→16
17271 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050  w = 1/[σ2(Fo2) + 3.9928P] where P = (Fo2 + 2Fc2)/3
S = 1.44(Δ/σ)max = 0.013
4151 reflectionsΔρmax = 0.64 e Å3
231 parametersΔρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Dy0.584689 (12)0.954047 (10)0.626856 (11)0.02053 (6)
Cl0.65147 (8)0.79787 (6)0.69040 (8)0.0406 (2)
Si10.37951 (8)0.73248 (6)0.55959 (7)0.0268 (2)
Si20.31576 (8)0.84186 (6)0.80092 (7)0.0269 (2)
C10.3894 (3)0.8543 (2)0.5966 (2)0.0205 (6)
C20.3757 (3)0.8993 (2)0.6921 (2)0.0221 (7)
B30.3682 (3)1.0040 (3)0.6794 (3)0.0249 (8)
H30.36401.04650.72850.030*
B40.3693 (3)1.0245 (2)0.5630 (3)0.0233 (8)
H40.36221.07990.53200.028*
B50.3862 (3)0.9239 (2)0.5134 (3)0.0217 (7)
H50.39260.91170.44810.026*
B60.2804 (3)0.9338 (3)0.6029 (3)0.0239 (8)
C70.4863 (4)0.7136 (3)0.4645 (3)0.0501 (11)
H7A0.47910.65310.44100.075*
H7B0.56420.72320.49140.075*
H7C0.47070.75500.41230.075*
C80.2302 (4)0.7083 (3)0.5048 (3)0.0472 (11)
H8A0.17230.73440.54410.071*
H8B0.21850.64440.50120.071*
H8C0.22300.73360.44110.071*
C90.4155 (3)0.6475 (2)0.6554 (3)0.0380 (9)
H9A0.35360.64530.69960.057*
H9B0.48730.66390.68960.057*
H9C0.42420.58940.62620.057*
C100.1876 (3)0.7697 (3)0.7643 (3)0.0372 (9)
H10A0.16930.73110.81700.056*
H10B0.20620.73380.70950.056*
H10C0.12140.80720.74740.056*
C110.4250 (4)0.7748 (3)0.8752 (3)0.0450 (10)
H11A0.46790.81390.91910.068*
H11B0.47800.74580.83350.068*
H11C0.38500.73000.91120.068*
C120.2567 (4)0.9287 (3)0.8824 (3)0.0436 (10)
H12A0.31790.96980.90230.065*
H12B0.22700.90000.93820.065*
H12C0.19470.96110.84870.065*
N10.6388 (3)1.0410 (2)0.7853 (2)0.0323 (7)
C130.7672 (3)1.0466 (3)0.8066 (3)0.0430 (10)
H13A0.78261.04290.87600.052*
H13B0.79501.10460.78540.052*
C140.8344 (3)0.9737 (3)0.7587 (3)0.0367 (9)
H14A0.91690.97980.77680.044*
H14B0.80860.91550.78120.044*
N20.8178 (3)0.9778 (2)0.6525 (2)0.0345 (7)
C150.5868 (4)0.9852 (3)0.8603 (3)0.0442 (10)
H15A0.61700.92500.85720.066*
H15B0.50340.98400.84960.066*
H15C0.60641.01020.92290.066*
C160.5897 (4)1.1327 (3)0.7910 (3)0.0464 (10)
H16A0.60691.15700.85430.070*
H16B0.50641.13030.77880.070*
H16C0.62371.17040.74360.070*
C170.8846 (3)0.9040 (3)0.6097 (4)0.0554 (12)
H17A0.96630.91130.62680.083*
H17B0.87270.90540.54070.083*
H17C0.85810.84740.63380.083*
C180.8693 (4)1.0633 (3)0.6189 (3)0.0517 (12)
H18A0.94771.06920.64600.078*
H18B0.82301.11300.63920.078*
H18C0.87061.06280.54970.078*
H60.191 (3)0.916 (2)0.600 (3)0.029 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Dy0.01951 (8)0.01862 (9)0.02317 (9)−0.00146 (6)−0.00200 (6)0.00244 (6)
Cl0.0311 (5)0.0249 (4)0.0647 (6)0.0002 (4)−0.0081 (4)0.0114 (4)
Si10.0314 (5)0.0189 (5)0.0301 (5)−0.0025 (4)0.0010 (4)−0.0016 (4)
Si20.0303 (5)0.0268 (5)0.0238 (5)−0.0015 (4)0.0049 (4)0.0036 (4)
C10.0178 (15)0.0198 (16)0.0238 (16)−0.0006 (12)0.0005 (12)0.0010 (13)
C20.0196 (16)0.0224 (16)0.0242 (17)−0.0003 (13)0.0008 (13)0.0005 (13)
B30.0251 (19)0.0226 (19)0.027 (2)0.0016 (15)0.0014 (15)−0.0026 (15)
B40.0221 (18)0.0163 (18)0.031 (2)0.0009 (14)0.0003 (15)0.0034 (15)
B50.0184 (17)0.0230 (19)0.0237 (18)−0.0028 (14)−0.0002 (14)−0.0003 (15)
B60.0207 (18)0.0231 (19)0.028 (2)0.0002 (15)0.0010 (15)0.0021 (15)
C70.067 (3)0.036 (2)0.049 (3)0.008 (2)0.022 (2)−0.0054 (19)
C80.050 (3)0.036 (2)0.054 (3)−0.0117 (19)−0.019 (2)−0.0039 (19)
C90.039 (2)0.0247 (19)0.049 (2)−0.0006 (16)−0.0026 (18)0.0039 (17)
C100.033 (2)0.040 (2)0.040 (2)−0.0074 (17)0.0114 (17)0.0021 (17)
C110.048 (2)0.045 (2)0.041 (2)0.0010 (19)−0.0038 (19)0.0168 (19)
C120.053 (3)0.042 (2)0.036 (2)−0.0025 (19)0.0161 (19)−0.0034 (18)
N10.0360 (17)0.0301 (16)0.0303 (16)−0.0061 (13)−0.0058 (13)−0.0029 (13)
C130.037 (2)0.047 (2)0.044 (2)−0.0102 (18)−0.0129 (18)−0.0051 (19)
C140.0300 (19)0.039 (2)0.039 (2)−0.0056 (16)−0.0141 (16)0.0089 (17)
N20.0266 (15)0.0383 (18)0.0377 (17)−0.0059 (13)−0.0058 (13)0.0031 (14)
C150.052 (2)0.053 (3)0.027 (2)−0.011 (2)−0.0055 (18)0.0033 (18)
C160.053 (3)0.034 (2)0.052 (3)−0.0002 (19)−0.005 (2)−0.0141 (19)
C170.025 (2)0.068 (3)0.073 (3)−0.001 (2)0.002 (2)−0.016 (3)
C180.037 (2)0.068 (3)0.049 (3)−0.023 (2)−0.0137 (19)0.020 (2)

Geometric parameters (Å, °)

Dy—Cl2.5851 (9)C9—H9B0.9600
Dy—N12.598 (3)C9—H9C0.9600
Dy—B5i2.692 (4)C10—H10A0.9600
Dy—N22.698 (3)C10—H10B0.9600
Dy—C12.698 (3)C10—H10C0.9600
Dy—C22.723 (3)C11—H11A0.9600
Dy—B4i2.728 (4)C11—H11B0.9600
Si1—C71.861 (4)C11—H11C0.9600
Si1—C91.865 (4)C12—H12A0.9600
Si1—C81.872 (4)C12—H12B0.9600
Si1—C11.884 (3)C12—H12C0.9600
Si2—C121.864 (4)N1—C151.477 (5)
Si2—C101.867 (4)N1—C161.477 (5)
Si2—C111.869 (4)N1—C131.487 (5)
Si2—C21.890 (3)C13—C141.502 (6)
C1—C21.498 (4)C13—H13A0.9700
C1—B51.548 (5)C13—H13B0.9700
C1—B61.724 (5)C14—N21.477 (5)
C2—B31.568 (5)C14—H14A0.9700
C2—B61.689 (5)C14—H14B0.9700
B3—B41.642 (5)N2—C171.478 (5)
B3—H30.9300N2—C181.485 (5)
B4—B51.661 (5)C15—H15A0.9600
B4—Dyi2.728 (4)C15—H15B0.9600
B4—H40.9300C15—H15C0.9600
B5—Dyi2.692 (4)C16—H16A0.9600
B5—H50.9300C16—H16B0.9600
B6—H61.06 (4)C16—H16C0.9600
C7—H7A0.9600C17—H17A0.9600
C7—H7B0.9600C17—H17B0.9600
C7—H7C0.9600C17—H17C0.9600
C8—H8A0.9600C18—H18A0.9600
C8—H8B0.9600C18—H18B0.9600
C8—H8C0.9600C18—H18C0.9600
C9—H9A0.9600
Cl—Dy—N195.98 (7)Si1—C8—H8B109.5
Cl—Dy—B5i143.74 (8)H8A—C8—H8B109.5
N1—Dy—B5i104.06 (10)Si1—C8—H8C109.5
Cl—Dy—N278.36 (7)H8A—C8—H8C109.5
N1—Dy—N268.26 (10)H8B—C8—H8C109.5
B5i—Dy—N281.43 (10)Si1—C9—H9A109.5
Cl—Dy—C177.81 (7)Si1—C9—H9B109.5
N1—Dy—C1124.51 (10)H9A—C9—H9B109.5
B5i—Dy—C1112.86 (10)Si1—C9—H9C109.5
N2—Dy—C1154.04 (9)H9A—C9—H9C109.5
Cl—Dy—C282.45 (7)H9B—C9—H9C109.5
N1—Dy—C292.59 (10)Si2—C10—H10A109.5
B5i—Dy—C2125.64 (10)Si2—C10—H10B109.5
N2—Dy—C2151.01 (9)H10A—C10—H10B109.5
C1—Dy—C232.08 (9)Si2—C10—H10C109.5
Cl—Dy—B4i111.47 (8)H10A—C10—H10C109.5
N1—Dy—B4i135.13 (10)H10B—C10—H10C109.5
B5i—Dy—B4i35.69 (11)Si2—C11—H11A109.5
N2—Dy—B4i82.89 (10)Si2—C11—H11B109.5
C1—Dy—B4i96.39 (10)H11A—C11—H11B109.5
C2—Dy—B4i124.68 (10)Si2—C11—H11C109.5
C7—Si1—C9105.8 (2)H11A—C11—H11C109.5
C7—Si1—C8107.6 (2)H11B—C11—H11C109.5
C9—Si1—C8108.95 (19)Si2—C12—H12A109.5
C7—Si1—C1107.74 (17)Si2—C12—H12B109.5
C9—Si1—C1116.69 (16)H12A—C12—H12B109.5
C8—Si1—C1109.69 (17)Si2—C12—H12C109.5
C12—Si2—C10105.03 (19)H12A—C12—H12C109.5
C12—Si2—C11106.8 (2)H12B—C12—H12C109.5
C10—Si2—C11109.84 (19)C15—N1—C16108.3 (3)
C12—Si2—C2109.07 (17)C15—N1—C13108.6 (3)
C10—Si2—C2110.65 (16)C16—N1—C13108.3 (3)
C11—Si2—C2114.95 (17)C15—N1—Dy103.2 (2)
C2—C1—B5111.1 (3)C16—N1—Dy115.3 (2)
C2—C1—B662.8 (2)C13—N1—Dy112.9 (2)
B5—C1—B665.7 (2)N1—C13—C14113.2 (3)
C2—C1—Si1131.5 (2)N1—C13—H13A108.9
B5—C1—Si1116.1 (2)C14—C13—H13A108.9
B6—C1—Si1129.7 (2)N1—C13—H13B108.9
C2—C1—Dy74.86 (17)C14—C13—H13B108.9
B5—C1—Dy74.80 (17)H13A—C13—H13B107.7
B6—C1—Dy102.23 (18)N2—C14—C13111.5 (3)
Si1—C1—Dy127.49 (14)N2—C14—H14A109.3
C1—C2—B3110.6 (3)C13—C14—H14A109.3
C1—C2—B665.2 (2)N2—C14—H14B109.3
B3—C2—B665.6 (2)C13—C14—H14B109.3
C1—C2—Si2124.1 (2)H14A—C14—H14B108.0
B3—C2—Si2121.2 (2)C14—N2—C17109.0 (3)
B6—C2—Si2118.4 (2)C14—N2—C18108.3 (3)
C1—C2—Dy73.05 (17)C17—N2—C18106.7 (3)
B3—C2—Dy73.14 (18)C14—N2—Dy101.8 (2)
B6—C2—Dy102.27 (19)C17—N2—Dy112.2 (2)
Si2—C2—Dy139.32 (15)C18—N2—Dy118.4 (2)
C2—B3—B4106.9 (3)N1—C15—H15A109.5
C2—B3—H3126.5N1—C15—H15B109.5
B4—B3—H3126.5H15A—C15—H15B109.5
B3—B4—B5104.3 (3)N1—C15—H15C109.5
B3—B4—Dyi168.7 (2)H15A—C15—H15C109.5
B5—B4—Dyi70.97 (18)H15B—C15—H15C109.5
B3—B4—H4127.9N1—C16—H16A109.5
B5—B4—H4127.9N1—C16—H16B109.5
Dyi—B4—H457.8H16A—C16—H16B109.5
C1—B5—B4107.0 (3)N1—C16—H16C109.5
C1—B5—Dyi171.5 (2)H16A—C16—H16C109.5
B4—B5—Dyi73.34 (18)H16B—C16—H16C109.5
C1—B5—H5126.5N2—C17—H17A109.5
B4—B5—H5126.5N2—C17—H17B109.5
Dyi—B5—H553.8H17A—C17—H17B109.5
C2—B6—C152.07 (18)N2—C17—H17C109.5
C2—B6—H6122.4 (19)H17A—C17—H17C109.5
C1—B6—H6122 (2)H17B—C17—H17C109.5
Si1—C7—H7A109.5N2—C18—H18A109.5
Si1—C7—H7B109.5N2—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
Si1—C7—H7C109.5N2—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
Si1—C8—H8A109.5

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2081).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bazan, G. C., Schaefer, W. P. & Bercaw, J. E. (1993). Organometallics, 12, 2126–2130.
  • Bruker (2003). SMART and SAINT Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2006). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tomlinson, S., Zheng, C., Hosmane, N. S., Yang, J., Wang, Y., Zhang, H., Gray, T. G., Demissie, T., Maguire, J. A., Baumann, F., Klein, A., Sarkar, B., Kaim, W. & Lipscomb, W. N. (2005). Organometallics24, 2177–2187.
  • Wang, J., Smith, J., Zheng, C., Maguire, J. A. & Hosmane, N. S. (2006). Organometallics, 25, 4118–4130.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography