PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1001–o1002.
Published online 2008 May 7. doi:  10.1107/S1600536808012713
PMCID: PMC2961489

4-(4-Bromo­benzyl­ideneamino)-1-(diphenyl­amino­meth­yl)-3-[1-(4-isobutyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C34H34BrN5S, the two phenyl rings of the diphenyl­amino­methyl group are inclined at an angle of 73.86 (8)° and they form dihedral angles of 74.04 (8) and 48.74 (8)° with the triazole ring. Intra­molecular C—H(...)S hydrogen bonds generate S(6) and S(5) ring motifs. The crystal structure is stabilized by weak C—H(...)π inter­actions.

Related literature

For related literature, see: Dave et al. (2007 [triangle]); Kalluraya et al. (2003 [triangle], 2004 [triangle], 2007 [triangle]); Kane et al. (1990 [triangle]). For literature on Mannich bases, see: Kalluraya et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1001-scheme1.jpg

Experimental

Crystal data

  • C34H34BrN5S
  • M r = 624.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1001-efi1.jpg
  • a = 10.9672 (1) Å
  • b = 9.7833 (1) Å
  • c = 28.6210 (3) Å
  • β = 105.966 (1)°
  • V = 2952.44 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.50 mm−1
  • T = 100.0 (1) K
  • 0.35 × 0.31 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.623, T max = 0.684
  • 55283 measured reflections
  • 13248 independent reflections
  • 7914 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.098
  • S = 1.01
  • 13248 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012713/ci2592sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012713/ci2592Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Nitrogen-containing heterocyclic molecules constitute the largest portion of chemical entities, which are part of many natural products, fine chemicals, and biologically active pharmaceuticals vital for enhancing the quality of life (Kalluraya et al. 2003, 2007; Kane et al., 1990). Mannich bases are a class of heterocycles, which have attracted significant interest in medicinal chemistry (Kalluraya et al., 2004). Among the Mannich bases, 1,2,4-triazole derivatives have attracted considerable attention because of their wide variety of biological activities, such as antineoplastic, analgesic and antibiotic activity (Dave et al., 2007). Mannich bases are obtained by condensing an amine, formaldehyde and a compound containing active hydrogen atom (Kalluraya et al., 2001). It is interesting to note that the reaction is highly regioselective and furnishes only the N-Mannich base and none of the S-Mannich derivatives, though the intermediate Schiff bases can exist in the thiol-thione tautomeric equilibrium. In view of these impressive array of properties exhibited by Mannich bases, the crystal structure of the title compound is reported here.

Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The triazole ring is planar with a maximium deviation of 0.010 (2) Å for atom C1. The planes through the C4—C9, C11—C16, C23—C28 and C29—C34 rings form dihedral angles of 25.10 (8), 81.35 (8), 74.04 (8) and 48.74 (8)°, respectively, with the the triazole ring. Weak C—H···S hydrogen bonds generating S(6) and S(5) ring motifs (Bernstein et al.,(1995) are observed in the molecular structure.

The crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 (centroid Cg1) and C23–C28 (centroid Cg2) rings (Table 1).

Experimental

The title compound, a Mannich base, was obtained by the aminomethylation of a Schiff base, 4-{[(4-bromophenyl)methylene]amino}-5-[1-(4-isobutylphenyl)ethyl]-3-mercapto- 1,2,4-triazole which was in turn obtained by refluxing 4-amino-3-mercapto-5- [1-(4-isobutylphenyl)ethyl]-1,2,4-triazole (0.01 mol) and 4-bromo benzaldehyde (0.01 mol) in ethanol (30 ml) by adding 2 drops of concentrated sulfuric acid for 3 h. A mixture of the obtained Schiff base (0.01 mol), formaldehyde (40%, 1 ml) and diphenyl amine (0.01 mol) in ethanol (50 ml) was stirred at room temperature for 16 h. The solid product was collected by filtration, washed with ethanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from an acetone-N,N-dimethylformamide (DMF) (1:3) solution by slow evaporation (yield 68%; m.p. 381–382 K). Analysis (%) for C34H34N5BrS found (calculated): C 65.23 (65.38), H 5.33 (5.44), N 11.21 (11.17).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating-group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Crystal data

C34H34BrN5SF000 = 1296
Mr = 624.63Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8665 reflections
a = 10.9672 (1) Åθ = 2.2–29.2º
b = 9.7833 (1) ŵ = 1.50 mm1
c = 28.6210 (3) ÅT = 100.0 (1) K
β = 105.966 (1)ºBlock, colourless
V = 2952.44 (5) Å30.35 × 0.31 × 0.27 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer13248 independent reflections
Radiation source: fine-focus sealed tube7914 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.059
T = 100.0(1) Kθmax = 35.4º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −17→17
Tmin = 0.623, Tmax = 0.684k = −15→15
55283 measured reflectionsl = −46→46

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.098  w = 1/[σ2(Fo2) + (0.0352P)2 + 0.5449P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
13248 reflectionsΔρmax = 0.46 e Å3
372 parametersΔρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.543981 (15)−0.004817 (17)−0.133261 (6)0.02529 (5)
S10.15515 (5)−0.27622 (4)0.091481 (16)0.02758 (10)
N10.11707 (12)−0.00549 (12)0.06174 (4)0.0177 (2)
N20.01822 (12)0.07970 (13)0.11283 (5)0.0194 (3)
N30.05163 (13)−0.05530 (13)0.12340 (4)0.0192 (3)
N40.05997 (13)−0.03122 (13)0.20801 (5)0.0213 (3)
N50.16650 (12)0.00579 (12)0.02217 (4)0.0186 (2)
C10.11076 (15)−0.11338 (15)0.09263 (5)0.0194 (3)
C20.05841 (14)0.10666 (15)0.07525 (5)0.0176 (3)
C30.25133 (14)−0.08055 (15)0.01851 (5)0.0191 (3)
H3A0.2737−0.15210.04060.023*
C40.31254 (14)−0.06601 (15)−0.02038 (5)0.0170 (3)
C50.41316 (15)−0.15262 (15)−0.02088 (5)0.0193 (3)
H5A0.4342−0.22310.00170.023*
C60.48243 (15)−0.13606 (15)−0.05424 (5)0.0194 (3)
H6A0.5502−0.1935−0.05390.023*
C70.44857 (15)−0.03203 (15)−0.08809 (5)0.0194 (3)
C80.34706 (15)0.05398 (16)−0.08930 (5)0.0202 (3)
H8A0.32500.1224−0.11270.024*
C90.27910 (15)0.03763 (15)−0.05571 (5)0.0195 (3)
H9A0.21110.0951−0.05640.023*
C100.04978 (14)0.24247 (15)0.05043 (5)0.0196 (3)
H10A0.02360.22700.01520.023*
C110.17723 (14)0.31489 (14)0.06341 (5)0.0181 (3)
C120.21998 (15)0.37842 (15)0.02736 (5)0.0203 (3)
H12A0.17430.3683−0.00500.024*
C130.32967 (16)0.45656 (16)0.03905 (6)0.0220 (3)
H13A0.35650.49790.01430.026*
C140.40058 (15)0.47425 (15)0.08733 (6)0.0198 (3)
C150.35851 (15)0.40810 (16)0.12319 (6)0.0218 (3)
H15A0.40470.41700.15560.026*
C160.24913 (15)0.32926 (16)0.11149 (5)0.0208 (3)
H16A0.22350.28550.13610.025*
C17−0.05057 (16)0.33197 (16)0.06350 (6)0.0258 (3)
H17A−0.13060.28510.05500.039*
H17B−0.05860.41650.04590.039*
H17C−0.02540.35040.09780.039*
C180.51856 (15)0.56133 (16)0.09975 (6)0.0228 (3)
H18A0.52880.60090.13170.027*
H18B0.50650.63600.07660.027*
C190.64115 (15)0.48568 (15)0.09976 (5)0.0193 (3)
H19A0.62740.43950.06830.023*
C200.74986 (16)0.58645 (16)0.10501 (6)0.0262 (3)
H20A0.72810.65170.07900.039*
H20B0.82500.53800.10380.039*
H20C0.76500.63320.13560.039*
C210.67544 (15)0.37717 (16)0.13955 (6)0.0227 (3)
H21A0.74930.32810.13710.034*
H21B0.60590.31470.13570.034*
H21C0.69270.42040.17080.034*
C220.02950 (16)−0.12061 (16)0.16644 (5)0.0224 (3)
H22A−0.0588−0.14750.15930.027*
H22B0.0808−0.20260.17400.027*
C230.18209 (15)0.02413 (15)0.22580 (5)0.0196 (3)
C240.29008 (16)−0.04544 (17)0.22172 (6)0.0227 (3)
H24A0.2821−0.12970.20610.027*
C250.40981 (16)0.01206 (17)0.24111 (6)0.0258 (3)
H25A0.4816−0.03550.23910.031*
C260.42321 (16)0.13885 (18)0.26334 (6)0.0275 (4)
H26A0.50320.17680.27610.033*
C270.31547 (17)0.20828 (17)0.26626 (6)0.0275 (4)
H27A0.32360.29400.28080.033*
C280.19685 (15)0.15264 (16)0.24802 (6)0.0231 (3)
H28A0.12580.20090.25050.028*
C29−0.03703 (14)0.00563 (15)0.22995 (5)0.0183 (3)
C30−0.14889 (15)0.06584 (17)0.20375 (6)0.0234 (3)
H30A−0.16230.08400.17080.028*
C31−0.24132 (15)0.09931 (17)0.22671 (6)0.0252 (3)
H31A−0.31700.13890.20900.030*
C32−0.22099 (15)0.07391 (16)0.27591 (6)0.0238 (3)
H32A−0.28300.09620.29120.029*
C33−0.10801 (15)0.01518 (15)0.30232 (6)0.0222 (3)
H33A−0.0938−0.00060.33540.027*
C34−0.01663 (15)−0.01996 (15)0.27969 (6)0.0207 (3)
H34A0.0585−0.06060.29740.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02348 (8)0.03478 (9)0.01983 (7)0.00250 (7)0.00969 (6)0.00190 (7)
S10.0432 (3)0.01778 (18)0.0276 (2)0.00609 (17)0.01949 (19)0.00226 (15)
N10.0210 (6)0.0184 (6)0.0148 (5)0.0036 (5)0.0069 (5)0.0005 (5)
N20.0205 (6)0.0183 (6)0.0200 (6)0.0040 (5)0.0064 (5)0.0002 (5)
N30.0237 (6)0.0183 (6)0.0171 (6)0.0025 (5)0.0079 (5)0.0003 (5)
N40.0200 (6)0.0272 (7)0.0181 (6)−0.0008 (5)0.0076 (5)−0.0047 (5)
N50.0207 (6)0.0199 (6)0.0161 (5)−0.0001 (5)0.0066 (5)−0.0017 (5)
C10.0221 (7)0.0199 (7)0.0168 (7)0.0015 (6)0.0067 (6)−0.0008 (5)
C20.0165 (7)0.0195 (7)0.0168 (6)0.0023 (5)0.0044 (6)−0.0018 (5)
C30.0225 (7)0.0192 (7)0.0156 (6)0.0008 (6)0.0052 (6)0.0002 (5)
C40.0188 (7)0.0173 (7)0.0144 (6)−0.0004 (5)0.0037 (5)−0.0014 (5)
C50.0251 (8)0.0165 (7)0.0160 (6)0.0018 (6)0.0053 (6)−0.0006 (5)
C60.0208 (7)0.0178 (7)0.0193 (7)0.0025 (6)0.0051 (6)−0.0032 (5)
C70.0209 (7)0.0231 (7)0.0146 (6)−0.0007 (6)0.0056 (6)−0.0030 (5)
C80.0215 (7)0.0212 (7)0.0170 (7)0.0027 (6)0.0037 (6)0.0018 (6)
C90.0197 (7)0.0206 (7)0.0175 (7)0.0033 (6)0.0040 (6)−0.0008 (5)
C100.0209 (7)0.0191 (7)0.0178 (7)0.0040 (6)0.0036 (6)0.0001 (5)
C110.0206 (7)0.0151 (6)0.0191 (7)0.0051 (5)0.0062 (6)0.0004 (5)
C120.0242 (7)0.0200 (7)0.0151 (6)0.0052 (6)0.0028 (6)0.0019 (5)
C130.0256 (8)0.0210 (7)0.0200 (7)0.0043 (6)0.0075 (6)0.0048 (6)
C140.0222 (7)0.0162 (7)0.0212 (7)0.0043 (5)0.0061 (6)0.0011 (5)
C150.0239 (8)0.0240 (8)0.0172 (7)0.0031 (6)0.0052 (6)−0.0019 (6)
C160.0245 (8)0.0220 (7)0.0175 (7)0.0024 (6)0.0088 (6)0.0013 (6)
C170.0220 (8)0.0230 (8)0.0317 (9)0.0060 (6)0.0059 (7)0.0004 (7)
C180.0265 (8)0.0180 (7)0.0239 (8)0.0008 (6)0.0068 (6)0.0011 (6)
C190.0242 (7)0.0185 (7)0.0163 (6)−0.0004 (6)0.0074 (6)−0.0008 (5)
C200.0297 (9)0.0208 (8)0.0320 (9)0.0001 (7)0.0151 (7)0.0009 (7)
C210.0251 (8)0.0213 (7)0.0213 (7)0.0005 (6)0.0059 (6)0.0012 (6)
C220.0266 (8)0.0234 (8)0.0191 (7)−0.0006 (6)0.0099 (6)−0.0016 (6)
C230.0218 (7)0.0220 (8)0.0164 (6)0.0015 (6)0.0074 (6)0.0027 (5)
C240.0265 (8)0.0241 (7)0.0201 (7)0.0031 (6)0.0108 (6)0.0007 (6)
C250.0218 (7)0.0350 (9)0.0231 (7)0.0051 (7)0.0106 (6)0.0053 (7)
C260.0216 (8)0.0352 (9)0.0270 (8)−0.0035 (7)0.0088 (7)0.0029 (7)
C270.0297 (9)0.0237 (8)0.0301 (9)−0.0030 (7)0.0101 (7)0.0006 (7)
C280.0218 (7)0.0215 (8)0.0278 (8)0.0019 (6)0.0102 (7)0.0033 (6)
C290.0196 (6)0.0181 (7)0.0179 (6)0.0001 (6)0.0062 (5)−0.0011 (6)
C300.0260 (8)0.0258 (8)0.0171 (7)0.0016 (7)0.0038 (6)0.0019 (6)
C310.0194 (7)0.0266 (8)0.0280 (8)0.0029 (6)0.0035 (6)0.0025 (7)
C320.0200 (7)0.0243 (8)0.0299 (8)0.0005 (6)0.0116 (6)−0.0030 (7)
C330.0254 (8)0.0246 (8)0.0182 (7)−0.0008 (6)0.0087 (6)0.0004 (6)
C340.0203 (7)0.0231 (8)0.0180 (7)0.0030 (6)0.0042 (6)0.0020 (6)

Geometric parameters (Å, °)

Br1—C71.8925 (16)C17—H17A0.96
S1—C11.6688 (15)C17—H17B0.96
N1—C21.3800 (19)C17—H17C0.96
N1—N51.3879 (18)C18—C191.535 (2)
N1—C11.3907 (19)C18—H18A0.97
N2—C21.2968 (19)C18—H18B0.97
N2—N31.3818 (18)C19—C201.522 (2)
N3—C11.354 (2)C19—C211.526 (2)
N3—C221.466 (2)C19—H19A0.98
N4—C231.404 (2)C20—H20A0.96
N4—C291.422 (2)C20—H20B0.96
N4—C221.4399 (19)C20—H20C0.96
N5—C31.2821 (19)C21—H21A0.96
C2—C101.497 (2)C21—H21B0.96
C3—C41.456 (2)C21—H21C0.96
C3—H3A0.93C22—H22A0.97
C4—C51.395 (2)C22—H22B0.97
C4—C91.408 (2)C23—C281.398 (2)
C5—C61.383 (2)C23—C241.398 (2)
C5—H5A0.93C24—C251.396 (2)
C6—C71.384 (2)C24—H24A0.93
C6—H6A0.93C25—C261.383 (2)
C7—C81.388 (2)C25—H25A0.93
C8—C91.378 (2)C26—C271.385 (2)
C8—H8A0.93C26—H26A0.93
C9—H9A0.93C27—C281.374 (2)
C10—C111.519 (2)C27—H27A0.93
C10—C171.531 (2)C28—H28A0.93
C10—H10A0.98C29—C301.381 (2)
C11—C121.392 (2)C29—C341.402 (2)
C11—C161.392 (2)C30—C311.390 (2)
C12—C131.386 (2)C30—H30A0.93
C12—H12A0.93C31—C321.386 (2)
C13—C141.397 (2)C31—H31A0.93
C13—H13A0.93C32—C331.386 (2)
C14—C151.395 (2)C32—H32A0.93
C14—C181.508 (2)C33—C341.378 (2)
C15—C161.387 (2)C33—H33A0.93
C15—H15A0.93C34—H34A0.93
C16—H16A0.93
C2—N1—N5118.83 (12)H17B—C17—H17C109.5
C2—N1—C1108.47 (13)C14—C18—C19114.99 (13)
N5—N1—C1132.69 (12)C14—C18—H18A108.5
C2—N2—N3104.23 (12)C19—C18—H18A108.5
C1—N3—N2113.84 (12)C14—C18—H18B108.5
C1—N3—C22125.69 (13)C19—C18—H18B108.5
N2—N3—C22120.35 (12)H18A—C18—H18B107.5
C23—N4—C29119.80 (12)C20—C19—C21110.56 (13)
C23—N4—C22121.01 (13)C20—C19—C18110.48 (12)
C29—N4—C22119.14 (13)C21—C19—C18111.82 (13)
C3—N5—N1118.00 (12)C20—C19—H19A107.9
N3—C1—N1102.21 (12)C21—C19—H19A107.9
N3—C1—S1127.43 (12)C18—C19—H19A107.9
N1—C1—S1130.26 (12)C19—C20—H20A109.5
N2—C2—N1111.21 (13)C19—C20—H20B109.5
N2—C2—C10125.62 (13)H20A—C20—H20B109.5
N1—C2—C10123.10 (13)C19—C20—H20C109.5
N5—C3—C4119.71 (13)H20A—C20—H20C109.5
N5—C3—H3A120.1H20B—C20—H20C109.5
C4—C3—H3A120.1C19—C21—H21A109.5
C5—C4—C9118.73 (14)C19—C21—H21B109.5
C5—C4—C3118.76 (13)H21A—C21—H21B109.5
C9—C4—C3122.39 (14)C19—C21—H21C109.5
C6—C5—C4121.49 (14)H21A—C21—H21C109.5
C6—C5—H5A119.3H21B—C21—H21C109.5
C4—C5—H5A119.3N4—C22—N3112.04 (13)
C5—C6—C7118.48 (14)N4—C22—H22A109.2
C5—C6—H6A120.8N3—C22—H22A109.2
C7—C6—H6A120.8N4—C22—H22B109.2
C6—C7—C8121.48 (15)N3—C22—H22B109.2
C6—C7—Br1119.31 (12)H22A—C22—H22B107.9
C8—C7—Br1119.20 (12)C28—C23—C24118.75 (15)
C9—C8—C7119.73 (14)C28—C23—N4119.42 (14)
C9—C8—H8A120.1C24—C23—N4121.83 (14)
C7—C8—H8A120.1C25—C24—C23119.77 (15)
C8—C9—C4120.05 (14)C25—C24—H24A120.1
C8—C9—H9A120.0C23—C24—H24A120.1
C4—C9—H9A120.0C26—C25—C24120.90 (16)
C2—C10—C11111.34 (12)C26—C25—H25A119.5
C2—C10—C17110.33 (13)C24—C25—H25A119.5
C11—C10—C17110.39 (12)C25—C26—C27118.88 (16)
C2—C10—H10A108.2C25—C26—H26A120.6
C11—C10—H10A108.2C27—C26—H26A120.6
C17—C10—H10A108.2C28—C27—C26121.13 (16)
C12—C11—C16118.23 (14)C28—C27—H27A119.4
C12—C11—C10120.12 (13)C26—C27—H27A119.4
C16—C11—C10121.44 (14)C27—C28—C23120.54 (15)
C13—C12—C11120.94 (14)C27—C28—H28A119.7
C13—C12—H12A119.5C23—C28—H28A119.7
C11—C12—H12A119.5C30—C29—C34119.83 (14)
C12—C13—C14121.13 (15)C30—C29—N4121.92 (14)
C12—C13—H13A119.4C34—C29—N4118.25 (13)
C14—C13—H13A119.4C29—C30—C31119.85 (14)
C15—C14—C13117.60 (15)C29—C30—H30A120.1
C15—C14—C18121.65 (14)C31—C30—H30A120.1
C13—C14—C18120.75 (14)C32—C31—C30120.24 (15)
C16—C15—C14121.29 (14)C32—C31—H31A119.9
C16—C15—H15A119.4C30—C31—H31A119.9
C14—C15—H15A119.4C31—C32—C33119.87 (15)
C15—C16—C11120.77 (15)C31—C32—H32A120.1
C15—C16—H16A119.6C33—C32—H32A120.1
C11—C16—H16A119.6C34—C33—C32120.24 (15)
C10—C17—H17A109.5C34—C33—H33A119.9
C10—C17—H17B109.5C32—C33—H33A119.9
H17A—C17—H17B109.5C33—C34—C29119.96 (14)
C10—C17—H17C109.5C33—C34—H34A120.0
H17A—C17—H17C109.5C29—C34—H34A120.0
C2—N2—N3—C1−0.72 (16)C11—C12—C13—C14−0.1 (2)
C2—N2—N3—C22175.64 (13)C12—C13—C14—C151.3 (2)
C2—N1—N5—C3159.63 (14)C12—C13—C14—C18−178.97 (14)
C1—N1—N5—C3−21.9 (2)C13—C14—C15—C16−1.0 (2)
N2—N3—C1—N11.58 (16)C18—C14—C15—C16179.34 (14)
C22—N3—C1—N1−174.54 (13)C14—C15—C16—C11−0.6 (2)
N2—N3—C1—S1−175.19 (11)C12—C11—C16—C151.8 (2)
C22—N3—C1—S18.7 (2)C10—C11—C16—C15−173.02 (14)
C2—N1—C1—N3−1.81 (15)C15—C14—C18—C1991.60 (18)
N5—N1—C1—N3179.61 (14)C13—C14—C18—C19−88.07 (18)
C2—N1—C1—S1174.83 (12)C14—C18—C19—C20171.34 (13)
N5—N1—C1—S1−3.7 (3)C14—C18—C19—C21−65.06 (17)
N3—N2—C2—N1−0.53 (15)C23—N4—C22—N3−58.20 (18)
N3—N2—C2—C10−177.61 (13)C29—N4—C22—N3119.16 (15)
N5—N1—C2—N2−179.65 (12)C1—N3—C22—N4134.71 (15)
C1—N1—C2—N21.54 (17)N2—N3—C22—N4−41.18 (18)
N5—N1—C2—C10−2.5 (2)C29—N4—C23—C28−28.3 (2)
C1—N1—C2—C10178.71 (13)C22—N4—C23—C28149.07 (15)
N1—N5—C3—C4−175.35 (12)C29—N4—C23—C24152.09 (15)
N5—C3—C4—C5173.71 (14)C22—N4—C23—C24−30.6 (2)
N5—C3—C4—C9−2.3 (2)C28—C23—C24—C252.1 (2)
C9—C4—C5—C62.0 (2)N4—C23—C24—C25−178.29 (14)
C3—C4—C5—C6−174.15 (14)C23—C24—C25—C26−1.6 (2)
C4—C5—C6—C7−1.0 (2)C24—C25—C26—C270.2 (2)
C5—C6—C7—C8−0.5 (2)C25—C26—C27—C280.7 (3)
C5—C6—C7—Br1178.70 (11)C26—C27—C28—C23−0.2 (3)
C6—C7—C8—C91.0 (2)C24—C23—C28—C27−1.2 (2)
Br1—C7—C8—C9−178.16 (11)N4—C23—C28—C27179.18 (15)
C7—C8—C9—C4−0.1 (2)C23—N4—C29—C30121.59 (16)
C5—C4—C9—C8−1.4 (2)C22—N4—C29—C30−55.8 (2)
C3—C4—C9—C8174.57 (14)C23—N4—C29—C34−58.07 (19)
N2—C2—C10—C11103.74 (17)C22—N4—C29—C34124.55 (15)
N1—C2—C10—C11−73.02 (18)C34—C29—C30—C31−0.7 (2)
N2—C2—C10—C17−19.2 (2)N4—C29—C30—C31179.60 (14)
N1—C2—C10—C17164.05 (13)C29—C30—C31—C320.7 (2)
C2—C10—C11—C12135.56 (14)C30—C31—C32—C330.1 (2)
C17—C10—C11—C12−101.54 (16)C31—C32—C33—C34−1.0 (2)
C2—C10—C11—C16−49.71 (19)C32—C33—C34—C291.0 (2)
C17—C10—C11—C1673.20 (17)C30—C29—C34—C33−0.1 (2)
C16—C11—C12—C13−1.5 (2)N4—C29—C34—C33179.55 (14)
C10—C11—C12—C13173.45 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···S10.932.523.217 (2)132
C22—H22B···S10.972.803.232 (2)108
C6—H6A···Cg1i0.932.813.717 (2)165
C21—H21C···Cg2ii0.962.893.829 (2)168

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2592).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dave, T. K., Purohit, D. H., Akbari, J. D. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem.46B, 352–356.
  • Kalluraya, B., Isloor, A. M., Chimbalkar, R. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem.10, 239–240.
  • Kalluraya, B., Lingappa, B. & Rai, N. S. (2007). Phosphorus Sulfur Silicon Relat. Elem.182, 1393–1401.
  • Kalluraya, B. & Rai, G. (2003). Synth. Commun.33, 3583–3589.
  • Kalluraya, B., Rai, G., Rai, S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem.14, 127–130.
  • Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem.33, 2772–2777. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography